/* * Software written by Jared Bruni https://github.com/lostjared This software is dedicated to all the people that experience mental illness. Website: http://lostsidedead.com YouTube: http://youtube.com/LostSideDead Instagram: http://instagram.com/jaredbruni Twitter: http://twitter.com/jaredbruni Facebook: http://facebook.com/LostSideDead0x You can use this program free of charge and redistrubute it online as long as you do not charge anything for this program. This program is meant to be 100% free. BSD 2-Clause License Copyright (c) 2019, Jared Bruni All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "ac.h" void ac::ImageAlphaXorSubFilter(cv::Mat &frame) { if(blend_set == true && subfilter != -1 && ac::draw_strings[subfilter] != "ImageAlphaXorSubFilter") { cv::Mat copyf = frame.clone(), copyi = frame.clone();; cv::Mat resized; cv::resize(blend_image, resized, frame.size()); cv::Mat out; CallFilter(subfilter, copyi); AlphaBlend(resized, copyi, out, 0.5); for(int z = 0; z < frame.rows; ++z) { for(int i = 0; i < frame.cols; ++i) { cv::Vec3b &pixel = frame.at(z, i); cv::Vec3b pix = out.at(z, i); for(int j = 0; j < 3; ++j) { pixel[j] = pixel[j]^pix[j]; } } } } AddInvert(frame); } void ac::SmoothTrailsBlend(cv::Mat &frame) { static MatrixCollection<16> collection; cv::Mat copyf = frame.clone(); cv::Mat copyi = frame.clone(); Smooth(copyf, &collection); AlphaBlend(copyf, copyi, frame, 0.5); AddInvert(frame); } void ac::MatrixCollectionRGBXor(cv::Mat &frame) { static MatrixCollection<12> collection; cv::Mat copyf = frame.clone(); MovementRGBTrails(copyf); collection.shiftFrames(copyf); for(int z = 0; z < frame.rows; ++z) { for(int i = 0; i < frame.cols; ++i) { cv::Vec3b &pixel = frame.at(z, i); cv::Scalar sc; for(int q = 0; q < collection.size(); ++q) { cv::Vec3b pix = collection.frames[q].at(z, i); for(int j = 0; j < 3; ++j) sc[j] += pix[j]; } for(int j = 0; j < 3; ++j) { int val = static_cast(sc[j]); pixel[j] = pixel[j]^val; } } } BlendWithSource(frame); AddInvert(frame); } void ac::RainbowGlitch(cv::Mat &frame) { SmoothTrailsBlend(frame); MovementRGBTrails(frame); AddInvert(frame); } void ac::RainbowGlichStrobe(cv::Mat &frame) { SmoothTrailsBlend(frame); MovementRGBTrails(frame); static bool negate = true; if(negate == true) { Negate(frame); negate = false; } else { negate = true; } AddInvert(frame); } void ac::NegateSwitchStrobe(cv::Mat &frame) { static bool strobe_value = true; if(strobe_value == true) { Negate(frame); strobe_value = false; } else strobe_value = true; AddInvert(frame); } void ac::StrobeAlphaShuffle(cv::Mat &frame) { cv::Mat copyf = frame.clone(), copyi = frame.clone(); ShuffleAlpha(copyf); static bool neg_ = true; if(neg_ == true) { Negate(copyf); neg_ = false; } else { neg_ = true; } AlphaBlend(copyf, copyi, frame, 0.5); AddInvert(frame); } void ac::ShuffleAlphaWithRGB(cv::Mat &frame) { cv::Mat copy1 = frame.clone(), copy2 = frame.clone(); ShuffleAlpha(copy1); ShuffleRGB(copy2); AlphaBlend(copy1, copy2, frame, 0.5); AddInvert(frame); } void ac::ShuffleAlphaSubFilter(cv::Mat &frame) { if(subfilter == -1 || ac::draw_strings[subfilter] == "ShuffleAlphaSubFilter") return; cv::Mat copyf = frame.clone(), copyi = frame.clone(); ShuffleAlpha(copyf); CallFilter(subfilter, copyi); AlphaBlend(copyf, copyi, frame, 0.5); AddInvert(frame); } void ac::ShuffleColorMap(cv::Mat &frame) { static int index = 0; static std::vector v{0,1,2,3,4,5,6,7,8,9,10,11}; static auto rng = std::default_random_engine{}; ac::setColorMap(v[index], frame); ++index; if(index > v.size()-1) { index = 0; std::shuffle(v.begin(), v.end(),rng); } AddInvert(frame); } void ac::BlendWithRainbowSubFilter(cv::Mat &frame) { if(subfilter == -1 || ac::draw_strings[subfilter] == "BlendWithRainbowSubFilter") return; blendFilterWithColorMap(subfilter, 4, frame); AddInvert(frame); } void ac::BlendWithJetSubFilter(cv::Mat &frame) { if(subfilter == -1 || ac::draw_strings[subfilter] == "BlendWithJetSubFilter") return; blendFilterWithColorMap(subfilter, 2, frame); AddInvert(frame); } void ac::ColormapBlendSubFilter(cv::Mat &frame) { if(subfilter == -1 || ac::draw_strings[subfilter] == "ColormapBlendSubFilter") return; cv::Mat copyf = frame.clone(), copyi = frame.clone(); setColorMap(rand()%11, copyf); setColorMap(rand()%11, copyi); RGBColorTrails(copyi); CallFilter(subfilter, copyf); AlphaBlend(copyf, copyi, frame, 0.5); AddInvert(frame); } void ac::RandomColorMap(cv::Mat &frame) { setColorMap(rand()%11, frame); AddInvert(frame); } void ac::SmoothMirrorBlurFlip(cv::Mat &frame) { cv::Mat copy1 = frame.clone(), copy2 = frame.clone(); SmoothTrailsBlend(copy1); MirrorBitwiseXor(copy1); SmoothTrailsBlend(copy2); BlurFlip(copy2); AlphaBlend(copy1, copy2, frame, 0.5); MedianBlend(frame); AddInvert(frame); } void ac::RandomColorMapAlphaBlendSubFilter(cv::Mat &frame) { if(subfilter == -1 || ac::draw_strings[subfilter] == "RandomColorMapAlphaBlendSubFilter") return; cv::Mat copy1 = frame.clone(), copy2 = frame.clone(); RandomColorMap(copy1); CallFilter(subfilter, copy1); static double alpha = 1.0, alpha_max = 4.0; AlphaBlend(copy1, copy2, frame, alpha); static int dir = 1; procPos(dir, alpha, alpha_max, 4.1, 0.005); AddInvert(frame); } void ac::RandomOrder(cv::Mat &frame) { int color_order = 0; static std::vector colors { 1,2,3,4 }; static auto rng = std::default_random_engine{}; static int index = static_cast(colors.size()+1); if(index > colors.size()) { std::shuffle(colors.begin(), colors.end(),rng); index = 0; } color_order = colors[index++]; for(int z = 0; z < frame.rows; ++z) { for(int i = 0; i < frame.cols; ++i) { cv::Vec3b &cur = frame.at(z, i); SwitchOrder(cur, color_order); } } AddInvert(frame); } void ac::RandomOrderMedianBlendSubFilter(cv::Mat &frame) { if(subfilter == -1 || ac::draw_strings[subfilter] == "RandomOrderMedianBlendSubFilter") return; cv::Mat copy1 = frame.clone(), copy2 = frame.clone(); CallFilter(subfilter, copy1); AlphaBlend(copy1, copy2, frame, 0.5); MedianBlend(frame); RandomOrder(frame); AddInvert(frame); } void ac::MirrorOrder(cv::Mat &frame) { cv::Mat copy1 = frame.clone(); static int index = 0; for(int z = 0; z < frame.rows-1; ++z) { for(int i = 0; i < frame.cols-1; ++i) { cv::Vec3b &pixel = frame.at(z, i); cv::Vec3b pix[6]; pix[0] = copy1.at(z, i); pix[1] = copy1.at(copy1.rows-z-1, i); pix[2] = copy1.at(copy1.rows-z-1, copy1.cols-i-1); pix[3] = copy1.at(z, copy1.cols-i-1); pix[4] = copy1.at(z+1, i+1); for(int j = 0; j < 3; ++j) SwitchOrder(pix[j], index); for(int j = 0; j < 3; ++j) { pixel[j] = pix[0][j] ^ pix[1][j] ^ pix[2][j] ^ pix[3][j] ^ pix[4][j] ^ pixel[j]; } } } ++index; if(index > 4) index = 1; AddInvert(frame); } void ac::MirrorOrderSubFilter(cv::Mat &frame) { if(subfilter == -1 || ac::draw_strings[subfilter] == "MirrorOrderSubFilter") return; cv::Mat copy1 = frame.clone(), copy2 = frame.clone(); CallFilter(subfilter, copy1); MirrorOrder(copy2); AlphaBlend(copy1, copy2, frame, 0.5); SmoothTrailsBlend(frame); DarkenImage(frame, 4); MedianBlend(frame); AddInvert(frame); } void ac::BlurMirrorOrder(cv::Mat &frame) { cv::Mat copy1 = frame.clone(); MedianBlur(copy1); MedianBlur(copy1); MedianBlur(copy1); static double alpha = 1.0, alpha_max = 4.0; static int index = 0; for(int z = 0; z < frame.rows-1; ++z) { for(int i = 0; i < frame.cols-1; ++i) { cv::Vec3b &pixel = frame.at(z, i); cv::Vec3b pix[6]; pix[0] = copy1.at(z, i); pix[1] = copy1.at(copy1.rows-z-1, i); pix[2] = copy1.at(copy1.rows-z-1, copy1.cols-i-1); pix[3] = copy1.at(z, copy1.cols-i-1); pix[4] = copy1.at(z+1, i+1); for(int j = 0; j < 3; ++j) SwitchOrder(pix[j], index); for(int j = 0; j < 3; ++j) { pixel[j] = static_cast(((pix[0][j] ^ pix[1][j] ^ pix[2][j] ^ pix[3][j] ^ pix[4][j] ^ pixel[j])/8) * alpha); } } } ++index; if(index > 4) index = 1; static int dir = 1; procPos(dir, alpha, alpha_max, 4.1, 0.05); MedianBlend(frame); AddInvert(frame); } void ac::AveragePixelMirror(cv::Mat &frame) { cv::Mat copy1 = frame.clone(); MedianBlur(copy1); MedianBlur(copy1); static int index = 0; for(int z = 0; z < frame.rows-1; ++z) { for(int i = 0; i < frame.cols-1; ++i) { cv::Vec3b &pixel = frame.at(z, i); cv::Vec3b pix[6]; pix[0] = copy1.at(z, i); pix[1] = copy1.at(copy1.rows-z-1, i); pix[2] = copy1.at(copy1.rows-z-1, copy1.cols-i-1); pix[3] = copy1.at(z, copy1.cols-i-1); cv::Scalar s; for(int i = 0; i < 5; ++i) { for(int j = 0; j < 3; ++j) { s[j] += pix[i][j]; } } for(int j = 0; j < 3; ++j) { s[j] /= 4; unsigned int value1 = static_cast(s[j]); unsigned int value2 = pixel[j]%(1+value1); pixel[j] = pixel[j]^value2; } } } ++index; if(index > 4) index = 1; AddInvert(frame); } void ac::ShuffleAlphaMedianBlend(cv::Mat &frame) { cv::Mat copy1 = frame.clone(), copy2 = frame.clone(); ShuffleAlpha(copy1); ShuffleAlpha(copy2); AlphaBlend(copy1, copy2, frame, 0.5); MedianBlend(frame); AddInvert(frame); } void ac::MirrorOrderAlpha(cv::Mat &frame) { cv::Mat copy1 = frame.clone(), copy2 = frame.clone(); MirrorOrder(copy1); MirrorXorAll(copy2); AlphaBlend(copy1, copy2, frame, 0.5); MedianBlend(frame); } void ac::FilterStrobeSubFilter(cv::Mat &frame) { if(subfilter == -1 || ac::draw_strings[subfilter] == "FilterStrobeSubFilter") return; static bool flash = true; if(flash == true) { CallFilter(subfilter, frame); Negate(frame); flash = false; } else { flash = true; CallFilter(subfilter, frame); } AddInvert(frame); } void ac::ImageSubtractMedianBlend(cv::Mat &frame) { if(blend_set == true) { cv::Mat image1; cv::resize(blend_image, image1, frame.size()); for(int z = 0; z < frame.rows; ++z) { for(int i = 0; i < frame.cols; ++i) { cv::Vec3b &pixel = frame.at(z, i); cv::Vec3b pix = image1.at(z, i); for(int j = 0; j < 3; ++j) { pixel[j] -= (pixel[j] ^ pix[j])/6; } } } MedianBlend(frame); } AddInvert(frame); } void ac::ImageDarkBlend(cv::Mat &frame) { if(blend_set == true) { cv::Mat reimage; cv::resize(blend_image, reimage, frame.size()); for(int z = 0; z < frame.rows; ++z) { cv::Scalar value; for(int i = 0; i < frame.cols; ++i) { cv::Vec3b &pixel = frame.at(z, i); cv::Vec3b pix = reimage.at(z, i); for(int j = 0; j < 3; ++j) { if(pix[j] == 0) pix[j] = 1; unsigned int val = pixel[j]%(1+pix[j]); pixel[j] = pixel[j]^val; } } } AddInvert(frame); } } void ac::ImageAverageDark(cv::Mat &frame) { if(blend_set == true) { cv::Mat reimage,frame_copy = frame.clone(); cv::resize(blend_image,reimage, frame.size()); for(int z = 0; z < frame.rows; ++z) { for(int i = 0; i < frame.cols; ++i) { cv::Vec3b &pixel = frame.at(z, i); cv::Vec3b pix[5]; pix[0] = frame_copy.at(z, i); pix[1] = frame_copy.at(z, frame.cols-i-1); pix[2] = frame_copy.at(frame.rows-z-1, i); pix[3] = frame_copy.at(frame.rows-z-1, frame.cols-i-1); cv::Scalar values; for(int j = 0; j < 4; ++j) { for(int q = 0; q < 3; ++q) { values[j] += pix[j][q]; } } cv::Vec3b color = reimage.at(z, i); for(int j = 0; j < 3; ++j) { values[j] /= (frame.rows * frame.cols); unsigned int value = static_cast(values[j]); color[j] /= 3; pixel[j] += 50; pixel[j] = color[j] ^ value ^ pixel[j]; } } } AddInvert(frame); } } void ac::ImageRemainderPixel(cv::Mat &frame) { if(blend_set == true) { cv::Mat reimage; cv::resize(blend_image, reimage, frame.size()); static double alpha = 1.0, alpha_max = 4.0; for(int z = 0; z < frame.rows; ++z) { for(int i = 0; i < frame.cols; ++i) { cv::Vec3b &pixel = frame.at(z, i); cv::Vec3b pix = reimage.at(z, i); for(int j = 0; j < 3; ++j) { unsigned int val = static_cast(pixel[j] * (1+alpha))%(1+pix[j]); pixel[j] = pixel[j] ^ val; } } } static int dir = 1; procPos(dir,alpha,alpha_max,4.1, 0.05); AddInvert(frame); } } void ac::AverageLinesBlend(cv::Mat &frame) { static double alpha = 1.0, alpha_max = 4.0; for(int z = 0; z < frame.rows; ++z) { unsigned int values[3] = {0, 0, 0}; for(int i = 0; i < frame.cols; ++i) { cv::Vec3b pixel = frame.at(z, i); for(int j = 0; j < 3; ++j) { values[j] += pixel[j]; } } values[0] /= frame.cols; values[1] /= frame.cols; values[2] /= frame.cols; for(int i = 0; i < frame.cols; ++i ){ cv::Vec3b &pixel = frame.at(z, i); for(int j = 0; j < 3; ++j) { if(values[j] == 0 || values[j] == 255) values[j] = 1; pixel[j] += static_cast((pixel[j]%1+values[j])*alpha); } } } static int dir = 1; procPos(dir, alpha, alpha_max, 4.1, 0.05); AddInvert(frame); } void ac::SoftFeedbackMirror(cv::Mat &frame) { SoftFeedbackResize64(frame); MirrorBitwiseXor(frame); AddInvert(frame); } void ac::AverageVerticalLinesBlend(cv::Mat &frame) { static double alpha = 1.0, alpha_max = 4.0; for(int i = 0; i < frame.cols; ++i) { unsigned int values[3] = {0, 0, 0}; for(int z = 0; z < frame.rows; ++z) { cv::Vec3b pixel = frame.at(z, i); for(int j = 0; j < 3; ++j) { values[j] += pixel[j]; } } values[0] /= frame.cols; values[1] /= frame.cols; values[2] /= frame.cols; for(int z = 0; z < frame.rows; ++z) { cv::Vec3b &pixel = frame.at(z, i); for(int j = 0; j < 3; ++j) { if(values[j] == 0 || values[j] == 255) values[j] = 1; pixel[j] += static_cast((pixel[j]%1+values[j])*alpha); } } } static int dir = 1; procPos(dir, alpha, alpha_max, 4.1, 0.05); AddInvert(frame); } void ac::LinesMedianBlend(cv::Mat &frame) { AverageLinesBlend(frame); AverageVerticalLinesBlend(frame); MedianBlend(frame); AddInvert(frame); } void ac::XorSquare(cv::Mat &frame) { for(int i = 0; i < frame.cols; ++i) { for(int z = 0; z < frame.rows; ++z) { cv::Vec3b &pixel = frame.at(z, i); for(int j = 0; j < 3; ++j) { pixel[j] = pixel[j] ^ i ^ z; } } } AddInvert(frame); } void ac::PixelValuesPlusOne(cv::Mat &frame) { cv::Mat copy1 = frame.clone(); MedianBlur(copy1); MedianBlur(copy1); MedianBlur(copy1); static double alpha = 1.0, alpha_max = 4.0; for(int i = 0; i < frame.cols-1; ++i) { for(int z = 0; z < frame.rows-1; ++z) { cv::Vec3b &pixel = frame.at(z, i); cv::Vec3b pix[4]; pix[0] = pixel; pix[1] = copy1.at(z+1, i+1); pix[2] = copy1.at(z+1, i); pix[3] = copy1.at(z, i+1); cv::Scalar values; for(int q = 0; q < 4; ++q) { for(int j = 0; j < 3; ++j) { values[j] += pix[q][j]; } } for(int j = 0; j < 3; ++j) { unsigned int v = static_cast(values[j] * alpha); pixel[j] = pixel[j] ^ v; } } } static int dir = 1; procPos(dir, alpha, alpha_max, 4.1, 0.05); AddInvert(frame); } void ac::AverageHorizontalFilter(cv::Mat &frame) { static double alpha = 1.0, alpha_max = 4.0; for(int z = 0; z < frame.rows; ++z) { unsigned int values[3] = {0,0,0}; for(int i = 0; i < frame.cols; ++i) { cv::Vec3b pixel = frame.at(z, i); for(int j = 0; j < 3; ++j) { values[j] += pixel[j]; } } for(int j = 0; j < 3; ++j) { values[j] /= frame.cols; } for(int i = 0; i < frame.cols; ++i) { cv::Vec3b &pixel = frame.at(z, i); for(int j = 0; j < 3; ++j) { pixel[j] = static_cast(pixel[j] * (1+alpha)) ^ static_cast(values[j] * alpha); } } } static int dir = 1; procPos(dir, alpha, alpha_max, 4.1, 0.05); AddInvert(frame); } void ac::AverageVerticalFilter(cv::Mat &frame) { static double alpha = 1.0, alpha_max = 4.0; for(int i = 0; i < frame.cols; ++i) { unsigned int values[3] = {0,0,0}; for(int z = 0; z < frame.rows; ++z) { cv::Vec3b pixel = frame.at(z, i); for(int j = 0; j < 3; ++j) { values[j] += pixel[j]; } } for(int j = 0; j < 3; ++j) { values[j] /= frame.rows; } for(int z = 0; z < frame.rows; ++z) { cv::Vec3b &pixel = frame.at(z, i); for(int j = 0; j < 3; ++j) { pixel[j] = static_cast(pixel[j] * (1+alpha)) ^ static_cast(values[j] * alpha); } } } static int dir = 1; procPos(dir, alpha, alpha_max, 4.1, 0.05); AddInvert(frame); } void ac::GradientAlphaXorHorizontal(cv::Mat &frame) { int iteration = frame.cols/255; static double alpha = 1.0, alpha_max = 4.0; for(int z = 0; z < frame.rows; ++z) { int index = 0, index_value = 0; for(int i = 0; i < frame.cols; ++i) { index ++; if((index%iteration)==0) { index = 0; index_value ++; } cv::Vec3b &pixel = frame.at(z, i); for (int j = 0; j < 3; ++j) { pixel[j] = static_cast(pixel[j]*(alpha+1))^static_cast(index_value*alpha); } } } static int dir = 1; procPos(dir, alpha, alpha_max, 4.1, 0.01); AddInvert(frame); } void ac::GradientAlphaXorVertical(cv::Mat &frame) { int iteration = frame.rows/255; static double alpha = 1.0, alpha_max = 4.0; for(int i = 0; i < frame.cols; ++i) { int index = 0, index_value = 0; for(int z = 0; z < frame.rows; ++z) { index ++; if((index%iteration)==0) { index = 0; index_value ++; } cv::Vec3b &pixel = frame.at(z, i); for (int j = 0; j < 3; ++j) { pixel[j] = static_cast(pixel[j]*(alpha+1))^static_cast(index_value*alpha); } } } static int dir = 1; procPos(dir, alpha, alpha_max, 4.1, 0.01); AddInvert(frame); } void ac::BlendImageWithSubFilter(cv::Mat &frame) { if(blend_set == false || subfilter == -1 || ac::draw_strings[subfilter] == "BlendImageWithSubFilter") return; cv::Mat copy1 = frame.clone(); cv::Mat reimage; cv::resize(blend_image, reimage, frame.size()); CallFilter(subfilter, copy1); for(int z = 0; z < frame.rows; ++z) { for(int i = 0; i < frame.cols; ++i) { cv::Vec3b &pixel = frame.at(z, i); cv::Vec3b pix[3]; pix[0] = pixel; pix[1] = copy1.at(z, i); pix[2] = reimage.at(z, i); unsigned int values[3] = {0,0,0}; for(int q = 0; q < 3; ++q) { for(int j = 0; j < 3; ++j) { values[j] += pix[q][j]; } } for(int j = 0; j < 3; ++j) { values[j] /= 3; pixel[j] = pixel[j] ^ values[j]; } } } AddInvert(frame); } void ac::BlendImageWithSubFilterAlpha(cv::Mat &frame) { if(blend_set == false || subfilter == -1 || ac::draw_strings[subfilter] == "BlendImageWithSubFilter") return; static double alpha = 1.0, alpha_max = 4.0; cv::Mat copy1 = frame.clone(); cv::Mat reimage; cv::resize(blend_image, reimage, frame.size()); CallFilter(subfilter, copy1); for(int z = 0; z < frame.rows; ++z) { for(int i = 0; i < frame.cols; ++i) { cv::Vec3b &pixel = frame.at(z, i); cv::Vec3b pix[3]; pix[0] = pixel; pix[1] = copy1.at(z, i); pix[2] = reimage.at(z, i); unsigned int values[3] = {0,0,0}; for(int q = 0; q < 3; ++q) { for(int j = 0; j < 3; ++j) { values[j] += pix[q][j]; } } for(int j = 0; j < 3; ++j) { values[j] /= 3; pixel[j] = static_cast(pixel[j]*(alpha+1)) ^ static_cast(values[j]*alpha); } } } static int dir = 1; procPos(dir, alpha, alpha_max, 4.1, 0.01); AddInvert(frame); } void ac::MedianBlendSoft(cv::Mat &frame) { static MatrixCollection<8> collection; MedianBlur(frame); collection.shiftFrames(frame); for(int z = 0; z < frame.rows; ++z) { for(int i = 0; i < frame.cols; ++i) { cv::Scalar value; for(int j = 0; j < collection.size(); ++j) { cv::Vec3b pixel = collection.frames[j].at(z, i); for(int q = 0; q < 3; ++q) { value[q] += pixel[q]; } } cv::Vec3b &pixel = frame.at(z, i); for(int j = 0; j < 3; ++j) { int val = 1+static_cast(value[j]); pixel[j] = static_cast(pixel[j] ^ val); } swapColors(frame, z, i);// swap colors if(isNegative) invert(frame, z, i);// if isNegative invert pixel */ } } } void ac::AndImageSubFilterXor(cv::Mat &frame) { if(blend_set == false || subfilter == -1 || ac::draw_strings[subfilter] == "AndImageSubFilterXor") return; cv::Mat copy1 = frame.clone(), reimage; cv::resize(blend_image, reimage, frame.size()); CallFilter(subfilter, copy1); static double alpha = 1.0, alpha_max = 4.0; for(int z = 0; z < frame.rows; ++z) { for(int i = 0; i < frame.cols; ++i) { cv::Vec3b &pixel = frame.at(z, i); cv::Vec3b pix[2]; pix[0] = reimage.at(z, i); pix[1] = copy1.at(z, i); unsigned int value = 0; for(int j = 0; j < 3; ++j) { value = pix[0][j] & pix[1][j]; pixel[j] = pixel[j] ^ value; } } } static int dir = 1; procPos(dir, alpha, alpha_max, 4.1, 0.01); AddInvert(frame); } void ac::AlphaBlendImageSubFilterXor(cv::Mat &frame) { if(blend_set == false || subfilter == -1 || ac::draw_strings[subfilter] == "AlphaBlendImageSubFilterXor") return; cv::Mat reimage; cv::Mat copy1 = frame.clone(), copy2; cv::resize(blend_image, reimage, frame.size()); CallFilter(subfilter, copy1); AlphaBlend(copy1, reimage, copy2, 0.5); Xor(frame, copy2); AddInvert(frame); } void ac::AlphaBlendImageSubFilterXorRev(cv::Mat &frame) { if(blend_set == false || subfilter == -1 || ac::draw_strings[subfilter] == "AlphaBlendImageSubFilterXorRev") return; cv::Mat reimage, copy1; cv::resize(blend_image, reimage, frame.size()); CallFilter(subfilter, reimage); AlphaBlend(frame, reimage, copy1, 0.5); Xor(frame, copy1); AddInvert(frame); } void ac::ParticleReleaseXor(cv::Mat &frame) { cv::Mat copy1 = frame.clone(); ParticleRelease(copy1); static double alpha = 1.0, alpha_max = 4.0; for(int z = 0; z < frame.rows; ++z) { for(int i = 0; i < frame.cols; ++i) { cv::Vec3b &pixel = frame.at(z, i); cv::Vec3b pix = copy1.at(z, i); for(int j = 0; j < 3; ++j) { pixel[j] = static_cast(pixel[j] * (1+alpha)) ^ static_cast(pix[j] * alpha); } } } static int dir = 1; procPos(dir, alpha, alpha_max, 4.1, 0.05); AddInvert(frame); } void ac::ParticleReleaseXorVec(cv::Mat &frame) { cv::Mat copy1 = frame.clone(); ParticleRelease(copy1); for(int z = 0; z < frame.rows; ++z) { for(int i = 0; i < frame.cols; ++i) { cv::Vec3b &pixel = frame.at(z, i); cv::Vec3b pix = copy1.at(z, i); for(int j = 0; j < 3; ++j) { pixel[j] = pixel[j]^pix[j]; } } } AddInvert(frame); } void ac::ParticleReleaseAlphaBlend(cv::Mat &frame) { cv::Mat copy1 = frame.clone(); ParticleRelease(copy1); static double alpha = 1.0, alpha_max = 4.0; for(int z = 0; z < frame.rows; ++z) { for(int i = 0; i < frame.cols; ++i) { cv::Vec3b &pixel = frame.at(z, i); cv::Vec3b pix = copy1.at(z, i); for(int j = 0; j < 3; ++j) { pixel[j] = static_cast(pixel[j]*(alpha+1)) + static_cast(pix[j]*alpha); } } } static int dir = 1; procPos(dir, alpha, alpha_max, 4.1, 0.01); AddInvert(frame); } void ac::ParticleReleaseWithImage(cv::Mat &frame) { if(blend_set == false) return; cv::Mat copy1; cv::Mat copy2 = frame.clone(); cv::resize(blend_image, copy1, frame.size()); ParticleRelease(copy1); AlphaBlend(copy1, copy2, frame, 0.5); MedianBlend(frame); AddInvert(frame); } void ac::ParticleReleaseSubFilter(cv::Mat &frame) { if(subfilter == -1 || ac::draw_strings[subfilter] == "ParticleReleaseSubFilter") return; cv::Mat copy1 = frame.clone(), copy2 = frame.clone(); CallFilter(subfilter, copy2); AlphaBlend(copy1, copy2, frame, 0.5); MedianBlend(frame); ParticleRelease(frame); AddInvert(frame); } void ac::ParticleReleaseImageSubFilter(cv::Mat &frame) { if(blend_set == false || subfilter == -1 || ac::draw_strings[subfilter] == "ParticleReleaseImageSubFilter") return; cv::Mat copy1 = frame.clone(), reimage; cv::resize(blend_image, reimage, frame.size()); CallFilter(subfilter, reimage); AlphaBlend(copy1, reimage, frame, 0.5); ParticleRelease(frame); MedianBlend(frame); AddInvert(frame); } void ac::ImageEnergy(cv::Mat &frame) { if(blend_set == false) return; pushSubFilter(filter_map["ExactImage"]); SmoothSubFilter32(frame); MedianBlend(frame); popSubFilter(); AddInvert(frame); } void ac::ImageEnergySubFilter(cv::Mat &frame) { if(blend_set == false || subfilter == -1 || ac::draw_strings[subfilter] == "ImageEnergySubFilter") return; SmoothSubFilter32(frame); SmoothImageAlphaBlend(frame); MedianBlend(frame); AddInvert(frame); } void ac::ImageDistortion(cv::Mat &frame) { if(blend_set == false) return; cv::Mat copy1 = frame.clone(), copy2; cv::resize(blend_image, copy2, frame.size()); pushSubFilter(ac::filter_map["SmoothImageAlphaBlend"]); EnergizeSubFilter(copy1); popSubFilter(); pushSubFilter(ac::filter_map["ExactImage"]); SmoothSubFilter(copy2); popSubFilter(); AlphaBlend(copy1, copy2, frame, 0.5); AddInvert(frame); } void ac::ImageDistortionSubFilter(cv::Mat &frame) { if(blend_set == false || subfilter == -1 || ac::draw_strings[subfilter] == "ImageDistortionSubFilter") return; cv::Mat copy1 = frame.clone(); cv::Mat copy2; cv::resize(blend_image,copy2,frame.size()); CallFilter(subfilter, copy1); pushSubFilter(filter_map["ExactImage"]); SmoothImageAlphaBlend(copy2); popSubFilter(); AlphaBlend(copy1, copy2, frame, 0.5); AddInvert(frame); } void ac::SmoothExactImageXorAlpha(cv::Mat &frame) { if(blend_set == false) return; cv::Mat copy1 = frame.clone(), copy2 = frame.clone(); pushSubFilter(filter_map["ExactImage"]); SmoothSubFilter16(copy1); popSubFilter(); pushSubFilter(filter_map["XorAlpha"]); SmoothSubFilter16(copy2); popSubFilter(); AlphaBlend(copy1, copy2, frame, 0.5); AddInvert(frame); } void ac::FeedbackColormap(cv::Mat &frame) { cv::Mat copy1 = frame.clone(), copy2 = frame.clone(); pushSubFilter(-1); SoftFeedbackResizeSubFilter64(copy1); popSubFilter(); pushSubFilter(filter_map["StrobeSort"]); ColormapBlendSubFilter(copy2); popSubFilter(); MedianBlend(copy2); AlphaBlend(copy1, copy2, frame, 0.5); AddInvert(frame); } void ac::SmoothImageAlphaBlendMedian(cv::Mat &frame) { if(blend_set == false) return; cv::Mat copy1 = frame.clone(), reimage; cv::resize(blend_image, reimage, frame.size()); SmoothImageAlphaBlend(reimage); MedianBlend(copy1); MedianBlend(reimage); AlphaBlend(copy1, reimage, frame, 0.5); AddInvert(frame); } void ac::ImageDarkenSmoothMedian(cv::Mat &frame) { if(blend_set == false) return; DarkenFilter(frame); SmoothImageAlphaBlendMedian(frame); pushSubFilter(filter_map["RGBColorTrails"]); SmoothSubFilter32(frame); popSubFilter(); MedianBlend(frame); AddInvert(frame); } void ac::XorReverseImageSmooth(cv::Mat &frame) { if(blend_set == false) return; cv::Mat copy1 = frame.clone(), copy2 = frame.clone(), reimage; cv::resize(blend_image, reimage, frame.size()); Xor(copy1, reimage); Reverse(reimage); Xor(copy2, reimage); pushSubFilter(filter_map["ExactImage"]); SmoothSubFilter32(copy1); popSubFilter(); AlphaBlend(copy1, copy2, frame, 0.5); MedianBlend(frame); } void ac::ReverseSubFilterBlend(cv::Mat &frame) { if(subfilter == -1 || ac::draw_strings[subfilter] == "ReverseSubFilterBlend") return; cv::Mat copy1 = frame.clone(), copy2 = frame.clone(); CallFilter(subfilter, copy1); Reverse(copy2); CallFilter(subfilter, copy2); AlphaBlend(copy1, copy2, frame, 0.5); } void ac::ReverseSubFilterXor(cv::Mat &frame) { if(subfilter == -1 || ac::draw_strings[subfilter] == "ReverseSubFilterXor") return; cv::Mat copy1 = frame.clone(), copy2 = frame.clone(); Reverse(copy1); CallFilter(subfilter, copy1); CallFilter(subfilter, copy2); Xor(copy1, frame); Xor(copy2, frame); AlphaBlend(copy1, copy2, frame, 0.5); } void ac::ImageReverseSubFilter(cv::Mat &frame) { if(blend_set == false || subfilter == -1 || ac::draw_strings[subfilter] == "ImageReverseSubFilter") return; cv::Mat reimage; cv::resize(blend_image, reimage, frame.size()); cv::Mat all_frames[3]; cv::flip(frame, all_frames[0], -1); cv::flip(frame, all_frames[1], 0); cv::flip(frame, all_frames[2], 1); cv::Mat copy1 = frame.clone(), copy2 = frame.clone(); for(int z = 0; z < copy1.rows; ++z) { for(int i = 0; i < copy1.cols; ++i){ cv::Vec3b &pixel = copy1.at(z, i); cv::Vec3b pix[4]; for(int j = 0; j < 3; ++j) { pix[j] = all_frames[j].at(z, i); } for(int j = 0; j < 3; ++j) { pixel[j] = pix[0][j] ^ pix[1][j] ^ pix[2][j] ^ pixel[j]; } } } static MatrixCollection<8> collection; Smooth(copy1, &collection); CallFilter(subfilter, reimage); Xor(reimage, copy1); AlphaBlend(reimage, copy2, frame, 0.5); DarkenFilter(frame); MedianBlend(frame); } void ac::SmoothRainbowMedian(cv::Mat &frame) { cv::Mat copy1 = frame.clone(); pushSubFilter(filter_map["RainbowXorBlend"]); // push new filter to stop of stack SmoothSubFilter32(frame);// Call function with SubFilter popSubFilter();// pop subfilter off of stack DarkenFilter(frame); MedianBlend(frame);// median blend cv::Mat copy2 = frame.clone(); AlphaBlend(copy1, copy2, frame, 0.5); }