/* * Check that only JS_REQUIRES_STACK/JS_FORCES_STACK functions, and functions * that have called a JS_FORCES_STACK function, access cx->fp directly or * indirectly. */ require({ after_gcc_pass: 'cfg' }); include('gcc_util.js'); include('unstable/adts.js'); include('unstable/analysis.js'); include('unstable/lazy_types.js'); include('unstable/esp.js'); var Zero_NonZero = {}; include('unstable/zero_nonzero.js', Zero_NonZero); // Tell MapFactory we don't need multimaps (a speed optimization). MapFactory.use_injective = true; /* * There are two regions in the program: RED and GREEN. Functions and member * variables may be declared RED in the C++ source. GREEN is the default. * * RED signals danger. A GREEN part of a function must not call a RED function * or access a RED member. * * The body of a RED function is all red. The body of a GREEN function is all * GREEN by default, but parts dominated by a call to a TURN_RED function are * red. This way GREEN functions can safely access RED stuff by calling a * TURN_RED function as preparation. * * The analysis does not attempt to prove anything about the body of a TURN_RED * function. (Both annotations are trusted; only unannotated code is checked * for errors.) */ const RED = 'JS_REQUIRES_STACK'; const TURN_RED = 'JS_FORCES_STACK'; function attrs(tree) { let a = DECL_P(tree) ? DECL_ATTRIBUTES(tree) : TYPE_ATTRIBUTES(TREE_TYPE(tree)); return translate_attributes(a); } function hasUserAttribute(tree, attrname) { let attributes = attrs(tree); if (attributes) { for (let i = 0; i < attributes.length; i++) { let attr = attributes[i]; if (attr.name == 'user' && attr.value.length == 1 && attr.value[0] == attrname) return true; } } return false; } /* * x is an expression or decl. These functions assume that */ function isRed(x) { return hasUserAttribute(x, RED); } function isTurnRed(x) { return hasUserAttribute(x, TURN_RED); } function process_tree(fndecl) { if (!(isRed(fndecl) || isTurnRed(fndecl))) { // Ordinarily a user of ESP runs the analysis, then generates output based // on the results. But in our case (a) we need sub-basic-block resolution, // which ESP doesn't keep; (b) it so happens that even though ESP can // iterate over blocks multiple times, in our case that won't cause // spurious output. (It could cause us to the same error message each time // through--but that's easily avoided.) Therefore we generate the output // while the ESP analysis is running. let a = new RedGreenCheck(fndecl, 0); if (a.hasRed) a.run(); } } function RedGreenCheck(fndecl, trace) { //print("RedGreenCheck: " + fndecl.toCString()); this._fndecl = fndecl; // Tell ESP that fndecl is a "property variable". This makes ESP track it in // a flow-sensitive way. The variable will be 1 in RED regions and "don't // know" in GREEN regions. (We are technically lying to ESP about fndecl // being a variable--what we really want is a synthetic variable indicating // RED/GREEN state, but ESP operates on GCC decl nodes.) this._state_var_decl = fndecl; let state_var = new ESP.PropVarSpec(this._state_var_decl, true, undefined); // Call base class constructor. let cfg = function_decl_cfg(fndecl); ESP.Analysis.apply(this, [cfg, [state_var], Zero_NonZero.meet, trace]); this.join = Zero_NonZero.join; // Preprocess all instructions in the cfg to determine whether this analysis // is necessary and gather some information we'll use later. // // Each isn may include a function call, an assignment, and/or some reads. // Using walk_tree to walk the isns is a little crazy but robust. // this.hasRed = false; for (let bb in cfg_bb_iterator(cfg)) { for (let isn in bb_isn_iterator(bb)) { walk_tree(isn, function(t, stack) { switch (TREE_CODE(t)) { case FIELD_DECL: if (isRed(t)) { let varName = dehydra_convert(t).name; // location_of(t) is the location of the declaration. isn.redInfo = ["cannot access JS_REQUIRES_STACK variable " + varName, location_of(stack[stack.length - 1])]; this.hasRed = true; } break; case CALL_EXPR: { let callee = call_function_decl(t); if (callee) { if (isRed(callee)) { let calleeName = dehydra_convert(callee).name; isn.redInfo = ["cannot call JS_REQUIRES_STACK function " + calleeName, location_of(t)]; this.hasRed = true; } else if (isTurnRed(callee)) { isn.turnRed = true; } } } break; } }); } } // Initialize mixin for infeasible-path elimination. this._zeroNonzero = new Zero_NonZero.Zero_NonZero(); } RedGreenCheck.prototype = new ESP.Analysis; RedGreenCheck.prototype.flowStateCond = function(isn, truth, state) { // forward event to mixin this._zeroNonzero.flowStateCond(isn, truth, state); }; RedGreenCheck.prototype.flowState = function(isn, state) { // forward event to mixin //try { // The try/catch here is a workaround for some baffling bug in zero_nonzero. this._zeroNonzero.flowState(isn, state); //} catch (exc) { // warning(exc, location_of(isn)); // warning("(Remove the workaround in jsstack.js and recompile to get a JS stack trace.)", // location_of(isn)); //} let green = (state.get(this._state_var_decl) != 1); let redInfo = isn.redInfo; if (green && redInfo) { error(redInfo[0], redInfo[1]); delete isn.redInfo; // avoid duplicate messages about this instruction } // If we call a TURNS_RED function, it doesn't take effect until after the // whole isn finishes executing (the most conservative rule). if (isn.turnRed) state.assignValue(this._state_var_decl, 1, isn); };