Flock flock; void setup() { size(200,200); colorMode(RGB,255,255,255,100); flock = new Flock(); // Add an initial set of boids into the system for (int i = 0; i < 20; i++) { flock.addBoid(new Boid(new Vector3D(width/2,height/2),2.0f,0.05f)); } smooth(); } void draw() { background(100); flock.run(); } // Add a new boid into the System void mousePressed() { flock.addBoid(new Boid(new Vector3D(mouseX,mouseY),2.0f,0.05f)); } class Flock { ArrayList boids; // An arraylist for all the boids Flock() { boids = new ArrayList(); // Initialize the arraylist } void run() { for (int i = 0; i < boids.size(); i++) { Boid b = (Boid) boids.get(i); b.run(boids); // Passing the entire list of boids to each boid individually } } void addBoid(Boid b) { boids.add(b); } } class Boid { Vector3D loc; Vector3D vel; Vector3D acc; float r; float maxforce; // Maximum steering force float maxspeed; // Maximum speed Boid(Vector3D l, float ms, float mf) { acc = new Vector3D(0,0); vel = new Vector3D(random(-1,1),random(-1,1)); loc = l.copy(); r = 2.0f; maxspeed = ms; maxforce = mf; } void run(ArrayList boids) { flock(boids); update(); borders(); render(); } // We accumulate a new acceleration each time based on three rules void flock(ArrayList boids) { Vector3D sep = separate(boids); // Separation Vector3D ali = align(boids); // Alignment Vector3D coh = cohesion(boids); // Cohesion // Arbitrarily weight these forces sep.mult(2.0f); ali.mult(1.0f); coh.mult(1.0f); // Add the force vectors to acceleration acc.add(sep); acc.add(ali); acc.add(coh); } // Method to update location void update() { // Update velocity vel.add(acc); // Limit speed vel.limit(maxspeed); loc.add(vel); // Reset accelertion to 0 each cycle acc.setXYZ(0,0,0); } void seek(Vector3D target) { acc.add(steer(target,false)); } void arrive(Vector3D target) { acc.add(steer(target,true)); } // A method that calculates a steering vector towards a target // Takes a second argument, if true, it slows down as it approaches the target Vector3D steer(Vector3D target, boolean slowdown) { Vector3D steer; // The steering vector Vector3D desired = target.sub(target,loc); // A vector pointing from the location to the target float d = desired.magnitude(); // Distance from the target is the magnitude of the vector // If the distance is greater than 0, calc steering (otherwise return zero vector) if (d > 0) { // Normalize desired desired.normalize(); // Two options for desired vector magnitude (1 -- based on distance, 2 -- maxspeed) if ((slowdown) && (d < 100.0f)) desired.mult(maxspeed*(d/100.0f)); // This damping is somewhat arbitrary else desired.mult(maxspeed); // Steering = Desired minus Velocity steer = target.sub(desired,vel); steer.limit(maxforce); // Limit to maximum steering force } else { steer = new Vector3D(0,0); } return steer; } void render() { // Draw a triangle rotated in the direction of velocity float theta = vel.heading2D() + radians(90); fill(200); stroke(255); pushMatrix(); translate(loc.x,loc.y); rotate(theta); beginShape(TRIANGLES); vertex(0, -r*2); vertex(-r, r*2); vertex(r, r*2); endShape(); popMatrix(); } // Wraparound void borders() { if (loc.x < -r) loc.x = width+r; if (loc.y < -r) loc.y = height+r; if (loc.x > width+r) loc.x = -r; if (loc.y > height+r) loc.y = -r; } // Separation // Method checks for nearby boids and steers away Vector3D separate (ArrayList boids) { float desiredseparation = 25.0f; Vector3D sum = new Vector3D(0,0,0); int count = 0; // For every boid in the system, check if it's too close for (int i = 0 ; i < boids.size(); i++) { Boid other = (Boid) boids.get(i); float d = loc.distance(loc,other.loc); // If the distance is greater than 0 and less than an arbitrary amount (0 when you are yourself) if ((d > 0) && (d < desiredseparation)) { // Calculate vector pointing away from neighbor Vector3D diff = loc.sub(loc,other.loc); diff.normalize(); diff.div(d); // Weight by distance sum.add(diff); count++; // Keep track of how many } } // Average -- divide by how many if (count > 0) { sum.div((float)count); } return sum; } // Alignment // For every nearby boid in the system, calculate the average velocity Vector3D align (ArrayList boids) { float neighbordist = 50.0f; Vector3D sum = new Vector3D(0,0,0); int count = 0; for (int i = 0 ; i < boids.size(); i++) { Boid other = (Boid) boids.get(i); float d = loc.distance(loc,other.loc); if ((d > 0) && (d < neighbordist)) { sum.add(other.vel); count++; } } if (count > 0) { sum.div((float)count); sum.limit(maxforce); } return sum; } // Cohesion // For the average location (i.e. center) of all nearby boids, calculate steering vector towards that location Vector3D cohesion (ArrayList boids) { float neighbordist = 50.0f; Vector3D sum = new Vector3D(0,0,0); // Start with empty vector to accumulate all locations int count = 0; for (int i = 0 ; i < boids.size(); i++) { Boid other = (Boid) boids.get(i); float d = loc.distance(loc,other.loc); if ((d > 0) && (d < neighbordist)) { sum.add(other.loc); // Add location count++; } } if (count > 0) { sum.div((float)count); return steer(sum,false); // Steer towards the location } return sum; } } // Simple Vector3D Class static class Vector3D { float x; float y; float z; Vector3D(float x_, float y_, float z_) { x = x_; y = y_; z = z_; } Vector3D(float x_, float y_) { x = x_; y = y_; z = 0f; } Vector3D() { x = 0f; y = 0f; z = 0f; } void setX(float x_) { x = x_; } void setY(float y_) { y = y_; } void setZ(float z_) { z = z_; } void setXY(float x_, float y_) { x = x_; y = y_; } void setXYZ(float x_, float y_, float z_) { x = x_; y = y_; z = z_; } void setXYZ(Vector3D v) { x = v.x; y = v.y; z = v.z; } float magnitude() { return (float) Math.sqrt(x*x + y*y + z*z); } Vector3D copy() { return new Vector3D(x,y,z); } Vector3D copy(Vector3D v) { return new Vector3D(v.x, v.y,v.z); } void add(Vector3D v) { x += v.x; y += v.y; z += v.z; } void sub(Vector3D v) { x -= v.x; y -= v.y; z -= v.z; } void mult(float n) { x *= n; y *= n; z *= n; } void div(float n) { x /= n; y /= n; z /= n; } void normalize() { float m = magnitude(); if (m > 0) { div(m); } } void limit(float max) { if (magnitude() > max) { normalize(); mult(max); } } float heading2D() { float angle = (float) Math.atan2(-y, x); return -1*angle; } Vector3D add(Vector3D v1, Vector3D v2) { Vector3D v = new Vector3D(v1.x + v2.x,v1.y + v2.y, v1.z + v2.z); return v; } Vector3D sub(Vector3D v1, Vector3D v2) { Vector3D v = new Vector3D(v1.x - v2.x,v1.y - v2.y,v1.z - v2.z); return v; } Vector3D div(Vector3D v1, float n) { Vector3D v = new Vector3D(v1.x/n,v1.y/n,v1.z/n); return v; } Vector3D mult(Vector3D v1, float n) { Vector3D v = new Vector3D(v1.x*n,v1.y*n,v1.z*n); return v; } float distance (Vector3D v1, Vector3D v2) { float dx = v1.x - v2.x; float dy = v1.y - v2.y; float dz = v1.z - v2.z; return (float) Math.sqrt(dx*dx + dy*dy + dz*dz); } }