mirror of
https://gitlab.com/cryptsetup/cryptsetup.git
synced 2025-12-13 20:00:08 +01:00
Add Reed-Solomon user-space decoding lib.
This commit is contained in:
committed by
Milan Broz
parent
4e19bc01d5
commit
5e0db46f17
@@ -77,6 +77,7 @@ libcryptsetup_la_SOURCES = \
|
||||
lib/verity/verity.c \
|
||||
lib/verity/verity.h \
|
||||
lib/verity/rs_encode_char.c \
|
||||
lib/verity/rs_decode_char.c \
|
||||
lib/verity/rs.h \
|
||||
lib/luks2/luks2_disk_metadata.c \
|
||||
lib/luks2/luks2_json_format.c \
|
||||
|
||||
@@ -23,13 +23,41 @@
|
||||
#ifndef _LIBFEC_RS_H
|
||||
#define _LIBFEC_RS_H
|
||||
|
||||
/* Special reserved value encoding zero in index form. */
|
||||
#define A0 (rs->nn)
|
||||
|
||||
#define RS_MIN(a, b) ((a) < (b) ? (a) : (b))
|
||||
|
||||
typedef unsigned char data_t;
|
||||
struct rs;
|
||||
|
||||
/* Reed-Solomon codec control block */
|
||||
struct rs {
|
||||
int mm; /* Bits per symbol */
|
||||
int nn; /* Symbols per block (= (1<<mm)-1) */
|
||||
data_t *alpha_to;/* log lookup table */
|
||||
data_t *index_of;/* Antilog lookup table */
|
||||
data_t *genpoly; /* Generator polynomial */
|
||||
int nroots; /* Number of generator roots = number of parity symbols */
|
||||
int fcr; /* First consecutive root, index form */
|
||||
int prim; /* Primitive element, index form */
|
||||
int iprim; /* prim-th root of 1, index form */
|
||||
int pad; /* Padding bytes in shortened block */
|
||||
};
|
||||
|
||||
static inline int modnn(struct rs *rs, int x)
|
||||
{
|
||||
while (x >= rs->nn) {
|
||||
x -= rs->nn;
|
||||
x = (x >> rs->mm) + (x & rs->nn);
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
struct rs *init_rs_char(int symsize, int gfpoly, int fcr, int prim, int nroots, int pad);
|
||||
void free_rs_char(struct rs *rs);
|
||||
|
||||
/* General purpose RS codec, 8-bit symbols */
|
||||
void encode_rs_char(struct rs *rs, data_t *data, data_t *parity);
|
||||
int decode_rs_char(struct rs *rs, data_t *data);
|
||||
|
||||
#endif
|
||||
|
||||
197
lib/verity/rs_decode_char.c
Normal file
197
lib/verity/rs_decode_char.c
Normal file
@@ -0,0 +1,197 @@
|
||||
/*
|
||||
* Reed-Solomon decoder, based on libfec
|
||||
*
|
||||
* Copyright (C) 2002, Phil Karn, KA9Q
|
||||
* libcryptsetup modifications
|
||||
* Copyright (C) 2017-2018, Red Hat, Inc. All rights reserved.
|
||||
*
|
||||
* This file is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU Lesser General Public
|
||||
* License as published by the Free Software Foundation; either
|
||||
* version 2.1 of the License, or (at your option) any later version.
|
||||
*
|
||||
* This file is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* Lesser General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Lesser General Public
|
||||
* License along with this file; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*/
|
||||
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#include "rs.h"
|
||||
|
||||
int decode_rs_char(struct rs* rs, data_t* data)
|
||||
{
|
||||
int deg_lambda, el, deg_omega, syn_error, count;
|
||||
int i, j, r, k;
|
||||
data_t q, tmp, num1, num2, den, discr_r;
|
||||
/* FIXME: remove VLAs here */
|
||||
data_t lambda[rs->nroots + 1], s[rs->nroots]; /* Err+Eras Locator poly and syndrome poly */
|
||||
data_t b[rs->nroots + 1], t[rs->nroots + 1], omega[rs->nroots + 1];
|
||||
data_t root[rs->nroots], reg[rs->nroots + 1], loc[rs->nroots];
|
||||
|
||||
memset(s, 0, rs->nroots * sizeof(data_t));
|
||||
memset(b, 0, (rs->nroots + 1) * sizeof(data_t));
|
||||
|
||||
/* form the syndromes; i.e., evaluate data(x) at roots of g(x) */
|
||||
for (i = 0; i < rs->nroots; i++)
|
||||
s[i] = data[0];
|
||||
|
||||
for (j = 1; j < rs->nn - rs->pad; j++) {
|
||||
for (i = 0; i < rs->nroots; i++) {
|
||||
if (s[i] == 0) {
|
||||
s[i] = data[j];
|
||||
} else {
|
||||
s[i] = data[j] ^ rs->alpha_to[modnn(rs, rs->index_of[s[i]] + (rs->fcr + i) * rs->prim)];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Convert syndromes to index form, checking for nonzero condition */
|
||||
syn_error = 0;
|
||||
for (i = 0; i < rs->nroots; i++) {
|
||||
syn_error |= s[i];
|
||||
s[i] = rs->index_of[s[i]];
|
||||
}
|
||||
|
||||
/*
|
||||
* if syndrome is zero, data[] is a codeword and there are no
|
||||
* errors to correct. So return data[] unmodified
|
||||
*/
|
||||
if (!syn_error)
|
||||
return 0;
|
||||
|
||||
memset(&lambda[1], 0, rs->nroots * sizeof(lambda[0]));
|
||||
lambda[0] = 1;
|
||||
|
||||
for (i = 0; i < rs->nroots + 1; i++)
|
||||
b[i] = rs->index_of[lambda[i]];
|
||||
|
||||
/*
|
||||
* Begin Berlekamp-Massey algorithm to determine error+erasure
|
||||
* locator polynomial
|
||||
*/
|
||||
r = 0;
|
||||
el = 0;
|
||||
while (++r <= rs->nroots) { /* r is the step number */
|
||||
/* Compute discrepancy at the r-th step in poly-form */
|
||||
discr_r = 0;
|
||||
for (i = 0; i < r; i++) {
|
||||
if ((lambda[i] != 0) && (s[r - i - 1] != A0)) {
|
||||
discr_r ^= rs->alpha_to[modnn(rs, rs->index_of[lambda[i]] + s[r - i - 1])];
|
||||
}
|
||||
}
|
||||
discr_r = rs->index_of[discr_r]; /* Index form */
|
||||
if (discr_r == A0) {
|
||||
/* 2 lines below: B(x) <-- x*B(x) */
|
||||
memmove(&b[1], b, rs->nroots * sizeof(b[0]));
|
||||
b[0] = A0;
|
||||
} else {
|
||||
/* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */
|
||||
t[0] = lambda[0];
|
||||
for (i = 0; i < rs->nroots; i++) {
|
||||
if (b[i] != A0)
|
||||
t[i + 1] = lambda[i + 1] ^ rs->alpha_to[modnn(rs, discr_r + b[i])];
|
||||
else
|
||||
t[i + 1] = lambda[i + 1];
|
||||
}
|
||||
if (2 * el <= r - 1) {
|
||||
el = r - el;
|
||||
/*
|
||||
* 2 lines below: B(x) <-- inv(discr_r) *
|
||||
* lambda(x)
|
||||
*/
|
||||
for (i = 0; i <= rs->nroots; i++)
|
||||
b[i] = (lambda[i] == 0) ? A0 : modnn(rs, rs->index_of[lambda[i]] - discr_r + rs->nn);
|
||||
} else {
|
||||
/* 2 lines below: B(x) <-- x*B(x) */
|
||||
memmove(&b[1], b, rs->nroots * sizeof(b[0]));
|
||||
b[0] = A0;
|
||||
}
|
||||
memcpy(lambda, t, (rs->nroots + 1) * sizeof(t[0]));
|
||||
}
|
||||
}
|
||||
|
||||
/* Convert lambda to index form and compute deg(lambda(x)) */
|
||||
deg_lambda = 0;
|
||||
for (i = 0; i < rs->nroots + 1; i++) {
|
||||
lambda[i] = rs->index_of[lambda[i]];
|
||||
if (lambda[i] != A0)
|
||||
deg_lambda = i;
|
||||
}
|
||||
/* Find roots of the error+erasure locator polynomial by Chien search */
|
||||
memcpy(®[1], &lambda[1], rs->nroots * sizeof(reg[0]));
|
||||
count = 0; /* Number of roots of lambda(x) */
|
||||
for (i = 1, k = rs->iprim - 1; i <= rs->nn; i++, k = modnn(rs, k + rs->iprim)) {
|
||||
q = 1; /* lambda[0] is always 0 */
|
||||
for (j = deg_lambda; j > 0; j--) {
|
||||
if (reg[j] != A0) {
|
||||
reg[j] = modnn(rs, reg[j] + j);
|
||||
q ^= rs->alpha_to[reg[j]];
|
||||
}
|
||||
}
|
||||
if (q != 0)
|
||||
continue; /* Not a root */
|
||||
|
||||
/* store root (index-form) and error location number */
|
||||
root[count] = i;
|
||||
loc[count] = k;
|
||||
/* If we've already found max possible roots, abort the search to save time */
|
||||
if (++count == deg_lambda)
|
||||
break;
|
||||
}
|
||||
|
||||
/*
|
||||
* deg(lambda) unequal to number of roots => uncorrectable
|
||||
* error detected
|
||||
*/
|
||||
if (deg_lambda != count)
|
||||
return -1;
|
||||
|
||||
/*
|
||||
* Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
|
||||
* x**rs->nroots). in index form. Also find deg(omega).
|
||||
*/
|
||||
deg_omega = deg_lambda - 1;
|
||||
for (i = 0; i <= deg_omega; i++) {
|
||||
tmp = 0;
|
||||
for (j = i; j >= 0; j--) {
|
||||
if ((s[i - j] != A0) && (lambda[j] != A0))
|
||||
tmp ^= rs->alpha_to[modnn(rs, s[i - j] + lambda[j])];
|
||||
}
|
||||
omega[i] = rs->index_of[tmp];
|
||||
}
|
||||
|
||||
/*
|
||||
* Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
|
||||
* inv(X(l))**(rs->fcr-1) and den = lambda_pr(inv(X(l))) all in poly-form
|
||||
*/
|
||||
for (j = count - 1; j >= 0; j--) {
|
||||
num1 = 0;
|
||||
for (i = deg_omega; i >= 0; i--) {
|
||||
if (omega[i] != A0)
|
||||
num1 ^= rs->alpha_to[modnn(rs, omega[i] + i * root[j])];
|
||||
}
|
||||
num2 = rs->alpha_to[modnn(rs, root[j] * (rs->fcr - 1) + rs->nn)];
|
||||
den = 0;
|
||||
|
||||
/* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */
|
||||
for (i = RS_MIN(deg_lambda, rs->nroots - 1) & ~1; i >= 0; i -= 2) {
|
||||
if (lambda[i + 1] != A0)
|
||||
den ^= rs->alpha_to[modnn(rs, lambda[i + 1] + i * root[j])];
|
||||
}
|
||||
|
||||
/* Apply error to data */
|
||||
if (num1 != 0 && loc[j] >= rs->pad) {
|
||||
data[loc[j] - rs->pad] ^= rs->alpha_to[modnn(rs, rs->index_of[num1] +
|
||||
rs->index_of[num2] + rs->nn - rs->index_of[den])];
|
||||
}
|
||||
}
|
||||
|
||||
return count;
|
||||
}
|
||||
@@ -25,32 +25,6 @@
|
||||
|
||||
#include "rs.h"
|
||||
|
||||
/* Special reserved value encoding zero in index form. */
|
||||
#define A0 (rs->nn)
|
||||
|
||||
/* Reed-Solomon codec control block */
|
||||
struct rs {
|
||||
int mm; /* Bits per symbol */
|
||||
int nn; /* Symbols per block (= (1<<mm)-1) */
|
||||
data_t *alpha_to;/* log lookup table */
|
||||
data_t *index_of;/* Antilog lookup table */
|
||||
data_t *genpoly; /* Generator polynomial */
|
||||
int nroots; /* Number of generator roots = number of parity symbols */
|
||||
int fcr; /* First consecutive root, index form */
|
||||
int prim; /* Primitive element, index form */
|
||||
int iprim; /* prim-th root of 1, index form */
|
||||
int pad; /* Padding bytes in shortened block */
|
||||
};
|
||||
|
||||
static inline int modnn(struct rs *rs, int x)
|
||||
{
|
||||
while (x >= rs->nn) {
|
||||
x -= rs->nn;
|
||||
x = (x >> rs->mm) + (x & rs->nn);
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
/* Initialize a Reed-Solomon codec
|
||||
* symsize = symbol size, bits
|
||||
* gfpoly = Field generator polynomial coefficients
|
||||
|
||||
Reference in New Issue
Block a user