/* * utils_crypt - cipher utilities for cryptsetup * * Copyright (C) 2004-2007 Clemens Fruhwirth * Copyright (C) 2009-2022 Red Hat, Inc. All rights reserved. * Copyright (C) 2009-2022 Milan Broz * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include #include #include #include #include #include #include #include "libcryptsetup.h" #include "utils_crypt.h" int crypt_parse_name_and_mode(const char *s, char *cipher, int *key_nums, char *cipher_mode) { if (!s || !cipher || !cipher_mode) return -EINVAL; if (sscanf(s, "%" MAX_CIPHER_LEN_STR "[^-]-%" MAX_CIPHER_LEN_STR "s", cipher, cipher_mode) == 2) { if (!strcmp(cipher_mode, "plain")) strcpy(cipher_mode, "cbc-plain"); if (key_nums) { char *tmp = strchr(cipher, ':'); *key_nums = tmp ? atoi(++tmp) : 1; if (!*key_nums) return -EINVAL; } return 0; } /* Short version for "empty" cipher */ if (!strcmp(s, "null") || !strcmp(s, "cipher_null")) { strcpy(cipher, "cipher_null"); strcpy(cipher_mode, "ecb"); if (key_nums) *key_nums = 0; return 0; } if (sscanf(s, "%" MAX_CIPHER_LEN_STR "[^-]", cipher) == 1) { strcpy(cipher_mode, "cbc-plain"); if (key_nums) *key_nums = 1; return 0; } return -EINVAL; } int crypt_parse_hash_integrity_mode(const char *s, char *integrity) { char mode[MAX_CIPHER_LEN], hash[MAX_CIPHER_LEN]; int r; if (!s || !integrity || strchr(s, '(') || strchr(s, ')')) return -EINVAL; r = sscanf(s, "%" MAX_CIPHER_LEN_STR "[^-]-%" MAX_CIPHER_LEN_STR "s", mode, hash); if (r == 2 && !isdigit(hash[0])) r = snprintf(integrity, MAX_CIPHER_LEN, "%s(%s)", mode, hash); else if (r == 2) r = snprintf(integrity, MAX_CIPHER_LEN, "%s-%s", mode, hash); else if (r == 1) r = snprintf(integrity, MAX_CIPHER_LEN, "%s", mode); else return -EINVAL; if (r < 0 || r >= MAX_CIPHER_LEN) return -EINVAL; return 0; } int crypt_parse_integrity_mode(const char *s, char *integrity, int *integrity_key_size) { int ks = 0, r = 0; if (!s || !integrity) return -EINVAL; /* AEAD modes */ if (!strcmp(s, "aead") || !strcmp(s, "poly1305") || !strcmp(s, "none")) { strncpy(integrity, s, MAX_CIPHER_LEN); ks = 0; } else if (!strcmp(s, "hmac-sha1")) { strncpy(integrity, "hmac(sha1)", MAX_CIPHER_LEN); ks = 20; } else if (!strcmp(s, "hmac-sha256")) { strncpy(integrity, "hmac(sha256)", MAX_CIPHER_LEN); ks = 32; } else if (!strcmp(s, "hmac-sha512")) { ks = 64; strncpy(integrity, "hmac(sha512)", MAX_CIPHER_LEN); } else if (!strcmp(s, "cmac-aes")) { ks = 16; strncpy(integrity, "cmac(aes)", MAX_CIPHER_LEN); } else r = -EINVAL; if (integrity_key_size) *integrity_key_size = ks; return r; } int crypt_parse_pbkdf(const char *s, const char **pbkdf) { const char *tmp = NULL; if (!s) return -EINVAL; if (!strcasecmp(s, CRYPT_KDF_PBKDF2)) tmp = CRYPT_KDF_PBKDF2; else if (!strcasecmp(s, CRYPT_KDF_ARGON2I)) tmp = CRYPT_KDF_ARGON2I; else if (!strcasecmp(s, CRYPT_KDF_ARGON2ID)) tmp = CRYPT_KDF_ARGON2ID; if (!tmp) return -EINVAL; if (pbkdf) *pbkdf = tmp; return 0; } /* * Thanks Mikulas Patocka for these two char converting functions. * * This function is used to load cryptographic keys, so it is coded in such a * way that there are no conditions or memory accesses that depend on data. * * Explanation of the logic: * (ch - '9' - 1) is negative if ch <= '9' * ('0' - 1 - ch) is negative if ch >= '0' * we "and" these two values, so the result is negative if ch is in the range * '0' ... '9' * we are only interested in the sign, so we do a shift ">> 8"; note that right * shift of a negative value is implementation-defined, so we cast the * value to (unsigned) before the shift --- we have 0xffffff if ch is in * the range '0' ... '9', 0 otherwise * we "and" this value with (ch - '0' + 1) --- we have a value 1 ... 10 if ch is * in the range '0' ... '9', 0 otherwise * we add this value to -1 --- we have a value 0 ... 9 if ch is in the range '0' * ... '9', -1 otherwise * the next line is similar to the previous one, but we need to decode both * uppercase and lowercase letters, so we use (ch & 0xdf), which converts * lowercase to uppercase */ static int hex_to_bin(unsigned char ch) { unsigned char cu = ch & 0xdf; return -1 + ((ch - '0' + 1) & (unsigned)((ch - '9' - 1) & ('0' - 1 - ch)) >> 8) + ((cu - 'A' + 11) & (unsigned)((cu - 'F' - 1) & ('A' - 1 - cu)) >> 8); } static char hex2asc(unsigned char c) { return c + '0' + ((unsigned)(9 - c) >> 4 & 0x27); } ssize_t crypt_hex_to_bytes(const char *hex, char **result, int safe_alloc) { char *bytes; size_t i, len; int bl, bh; if (!hex || !result) return -EINVAL; len = strlen(hex); if (len % 2) return -EINVAL; len /= 2; bytes = safe_alloc ? crypt_safe_alloc(len) : malloc(len); if (!bytes) return -ENOMEM; for (i = 0; i < len; i++) { bh = hex_to_bin(hex[i * 2]); bl = hex_to_bin(hex[i * 2 + 1]); if (bh == -1 || bl == -1) { safe_alloc ? crypt_safe_free(bytes) : free(bytes); return -EINVAL; } bytes[i] = (bh << 4) | bl; } *result = bytes; return i; } char *crypt_bytes_to_hex(size_t size, const char *bytes) { unsigned i; char *hex; if (size && !bytes) return NULL; /* Alloc adds trailing \0 */ if (size == 0) hex = crypt_safe_alloc(2); else hex = crypt_safe_alloc(size * 2 + 1); if (!hex) return NULL; if (size == 0) hex[0] = '-'; else for (i = 0; i < size; i++) { hex[i * 2] = hex2asc((const unsigned char)bytes[i] >> 4); hex[i * 2 + 1] = hex2asc((const unsigned char)bytes[i] & 0xf); } return hex; } void crypt_log_hex(struct crypt_device *cd, const char *bytes, size_t size, const char *sep, int numwrap, const char *wrapsep) { unsigned i; for (i = 0; i < size; i++) { if (wrapsep && numwrap && i && !(i % numwrap)) crypt_logf(cd, CRYPT_LOG_NORMAL, wrapsep); crypt_logf(cd, CRYPT_LOG_NORMAL, "%c%c%s", hex2asc((const unsigned char)bytes[i] >> 4), hex2asc((const unsigned char)bytes[i] & 0xf), sep); } } bool crypt_is_cipher_null(const char *cipher_spec) { if (!cipher_spec) return false; return (strstr(cipher_spec, "cipher_null") || !strcmp(cipher_spec, "null")); }