mirror of
https://gitlab.com/cryptsetup/cryptsetup.git
synced 2025-12-05 16:00:05 +01:00
The volume key structure may often be in configuration where 'key' member does not contain real data. Some examples: - volume key acquired by querring device-mapper where key was originaly passed by kernel keyring reference. - volume key allocated by crypt_alloc_volume_key(size, NULL) With this patch access to internal 'uninitialized' data result in failed assert(). For use cases where key data are not needed (keyring reference wrapper, key length info only) we do not have to allocate and lock the safe buffer in memory. Further improvements might to completely hide the volume key internals and access only via setter and getter functions.
1022 lines
26 KiB
C
1022 lines
26 KiB
C
// SPDX-License-Identifier: LGPL-2.1-or-later
|
|
/*
|
|
* FVAULT2 (FileVault2-compatible) volume handling
|
|
*
|
|
* Copyright (C) 2021-2022 Pavel Tobias
|
|
*/
|
|
|
|
#include <errno.h>
|
|
#include <regex.h>
|
|
#include <stdio.h>
|
|
#include <uuid/uuid.h>
|
|
|
|
#include "internal.h"
|
|
#include "fvault2.h"
|
|
|
|
/* Core Storage signature/magic; "CS" big-endian */
|
|
#define FVAULT2_CORE_STORAGE_MAGIC 0x4353
|
|
|
|
/* size of the physical volume header in bytes */
|
|
#define FVAULT2_VOL_HEADER_SIZE 512
|
|
|
|
/* size of a single metadata block in bytes */
|
|
#define FVAULT2_MD_BLOCK_SIZE 8192
|
|
|
|
/* maximal offset to read metadata block */
|
|
#define FVAULT2_MAX_OFF 1024*1024*1024
|
|
|
|
/* encrypted metadata parsing progress flags (see _read_encrypted_metadata) */
|
|
#define FVAULT2_ENC_MD_PARSED_0x0019 0b001
|
|
#define FVAULT2_ENC_MD_PARSED_0x001A 0b010
|
|
#define FVAULT2_ENC_MD_PARSED_0x0305 0b100
|
|
#define FVAULT2_ENC_MD_PARSED_NONE 0b000
|
|
#define FVAULT2_ENC_MD_PARSED_ALL 0b111
|
|
|
|
/* sizes of decoded PassphraseWrappedKEKStruct and KEKWrappedVolumeKeyStruct */
|
|
#define FVAULT2_PWK_SIZE 284
|
|
#define FVAULT2_KWVK_SIZE 256
|
|
|
|
/* size of an AES-128 key */
|
|
#define FVAULT2_AES_KEY_SIZE 16
|
|
|
|
/* size of the volume key and the encrypted metadata decryption key */
|
|
#define FVAULT2_XTS_KEY_SIZE (FVAULT2_AES_KEY_SIZE * 2)
|
|
|
|
/* size of an XTS tweak value */
|
|
#define FVAULT2_XTS_TWEAK_SIZE 16
|
|
|
|
/* size of a binary representation of a UUID */
|
|
#define FVAULT2_UUID_BIN_SIZE 16
|
|
|
|
struct crc32_checksum {
|
|
uint32_t value;
|
|
uint32_t seed;
|
|
} __attribute__((packed));
|
|
|
|
struct volume_header {
|
|
struct crc32_checksum checksum;
|
|
uint16_t version;
|
|
uint16_t block_type;
|
|
uint8_t unknown1[52];
|
|
uint64_t ph_vol_size;
|
|
uint8_t unknown2[16];
|
|
uint16_t magic;
|
|
uint32_t checksum_algo;
|
|
uint8_t unknown3[2];
|
|
uint32_t block_size;
|
|
uint32_t metadata_size;
|
|
uint64_t disklbl_blkoff;
|
|
uint64_t other_md_blkoffs[3];
|
|
uint8_t unknown4[32];
|
|
uint32_t key_data_size;
|
|
uint32_t cipher;
|
|
uint8_t key_data[FVAULT2_AES_KEY_SIZE];
|
|
uint8_t unknown5[112];
|
|
uint8_t ph_vol_uuid[FVAULT2_UUID_BIN_SIZE];
|
|
uint8_t unknown6[192];
|
|
} __attribute__((packed));
|
|
|
|
struct volume_groups_descriptor {
|
|
uint8_t unknown1[8];
|
|
uint64_t enc_md_blocks_n;
|
|
uint8_t unknown2[16];
|
|
uint64_t enc_md_blkoff;
|
|
} __attribute__((packed));
|
|
|
|
struct metadata_block_header {
|
|
struct crc32_checksum checksum;
|
|
uint16_t version;
|
|
uint16_t block_type;
|
|
uint8_t unknown1[20];
|
|
uint64_t block_num;
|
|
uint8_t unknown2[8];
|
|
uint32_t block_size;
|
|
uint8_t unknown3[12];
|
|
} __attribute__((packed));
|
|
|
|
struct metadata_block_0x0011 {
|
|
struct metadata_block_header header;
|
|
uint32_t md_size;
|
|
uint8_t unknown1[4];
|
|
struct crc32_checksum checksum;
|
|
uint8_t unknown2[140];
|
|
uint32_t vol_gr_des_off;
|
|
} __attribute__((packed));
|
|
|
|
struct metadata_block_0x0019 {
|
|
struct metadata_block_header header;
|
|
uint8_t unknown1[40];
|
|
uint32_t xml_comp_size;
|
|
uint32_t xml_uncomp_size;
|
|
uint32_t xml_off;
|
|
uint32_t xml_size;
|
|
} __attribute__((packed));
|
|
|
|
struct metadata_block_0x001a {
|
|
struct metadata_block_header header;
|
|
uint8_t unknown1[64];
|
|
uint32_t xml_off;
|
|
uint32_t xml_size;
|
|
} __attribute__((packed));
|
|
|
|
struct metadata_block_0x0305 {
|
|
struct metadata_block_header header;
|
|
uint32_t entries_n;
|
|
uint8_t unknown1[36];
|
|
uint32_t log_vol_blkoff;
|
|
} __attribute__((packed));
|
|
|
|
struct passphrase_wrapped_kek {
|
|
uint32_t pbkdf2_salt_type;
|
|
uint32_t pbkdf2_salt_size;
|
|
uint8_t pbkdf2_salt[FVAULT2_PBKDF2_SALT_SIZE];
|
|
uint32_t wrapped_kek_type;
|
|
uint32_t wrapped_kek_size;
|
|
uint8_t wrapped_kek[FVAULT2_WRAPPED_KEY_SIZE];
|
|
uint8_t unknown1[112];
|
|
uint32_t pbkdf2_iters;
|
|
} __attribute__((packed));
|
|
|
|
struct kek_wrapped_volume_key {
|
|
uint32_t wrapped_vk_type;
|
|
uint32_t wrapped_vk_size;
|
|
uint8_t wrapped_vk[FVAULT2_WRAPPED_KEY_SIZE];
|
|
} __attribute__((packed));
|
|
|
|
/**
|
|
* Test whether all bytes of a chunk of memory are equal to a constant value.
|
|
* @param[in] value the value all bytes should be equal to
|
|
* @param[in] data the tested chunk of memory
|
|
* @param[in] data_size byte-size of the chunk of memory
|
|
*/
|
|
static bool _filled_with(
|
|
uint8_t value,
|
|
const void *data,
|
|
size_t data_size)
|
|
{
|
|
const uint8_t *data_bytes = data;
|
|
size_t i;
|
|
|
|
for (i = 0; i < data_size; i++)
|
|
if (data_bytes[i] != value)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Assert the validity of the CRC checksum of a chunk of memory.
|
|
* @param[in] data a chunk of memory starting with a crc32_checksum struct
|
|
* @param[in] data_size the size of the chunk of memory in bytes
|
|
*/
|
|
static int _check_crc(
|
|
const void *data,
|
|
size_t data_size)
|
|
{
|
|
const size_t crc_size = sizeof(struct crc32_checksum);
|
|
uint32_t seed;
|
|
uint32_t value;
|
|
|
|
assert(data_size >= crc_size);
|
|
|
|
value = le32_to_cpu(((const struct crc32_checksum *)data)->value);
|
|
seed = le32_to_cpu(((const struct crc32_checksum *)data)->seed);
|
|
if (seed != 0xffffffff)
|
|
return -EINVAL;
|
|
|
|
if (crypt_crc32c(seed, (const uint8_t *)data + crc_size,
|
|
data_size - crc_size) != value)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Unwrap an AES-wrapped key.
|
|
* @param[in] kek the KEK with which the key has been wrapped
|
|
* @param[in] kek_size the size of the KEK in bytes
|
|
* @param[in] key_wrapped the wrapped key
|
|
* @param[in] key_wrapped_size the size of the wrapped key in bytes
|
|
* @param[out] key_buf key an output buffer for the unwrapped key
|
|
* @param[in] key_buf_size the size of the output buffer in bytes
|
|
*/
|
|
static int _unwrap_key(
|
|
const void *kek,
|
|
size_t kek_size,
|
|
const void *key_wrapped,
|
|
size_t key_wrapped_size,
|
|
void *key_buf,
|
|
size_t key_buf_size)
|
|
{
|
|
/* Algorithm and notation taken from NIST Special Publication 800-38F:
|
|
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
|
|
|
|
This implementation supports only 128-bit KEKs and wrapped keys. */
|
|
|
|
int r = 0;
|
|
struct crypt_cipher *cipher = NULL;
|
|
void *cipher_in = NULL;
|
|
void *cipher_out = NULL;
|
|
uint64_t a;
|
|
uint64_t r2;
|
|
uint64_t r3;
|
|
uint64_t t;
|
|
uint64_t r2_prev;
|
|
|
|
assert(kek_size == 16 && key_wrapped_size == 24 && key_buf_size == 16);
|
|
|
|
r = crypt_cipher_init(&cipher, "aes", "ecb", kek, kek_size);
|
|
if (r < 0)
|
|
goto out;
|
|
|
|
cipher_in = malloc(16);
|
|
if (cipher_in == NULL) {
|
|
r = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
cipher_out = malloc(16);
|
|
if (cipher_out == NULL) {
|
|
r = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
/* CHAPTER 6.1, ALGORITHM 2: W^-1(C) */
|
|
|
|
/* initialize variables */
|
|
a = ((const uint64_t *)key_wrapped)[0]; /* A = C_1 (see step 1c) */
|
|
r2 = ((const uint64_t *)key_wrapped)[1]; /* R_1 = C_2 (see step 1d) */
|
|
r3 = ((const uint64_t *)key_wrapped)[2]; /* R_2 = C_3 (see step 1d) */
|
|
|
|
/* calculate intermediate values for each t = s, ..., 1 (see step 2),
|
|
where s = 6 * (n - 1) (see step 1a) */
|
|
for (t = 6 * (3 - 1); t > 0; t--) {
|
|
/* store current R2 for later assignment (see step 2c) */
|
|
r2_prev = r2;
|
|
|
|
/* prepare input for CIPH^{-1}_K (see steps 2a, 2b) */
|
|
((uint64_t *)cipher_in)[0] = a ^ cpu_to_be64(t);
|
|
((uint64_t *)cipher_in)[1] = r3;
|
|
|
|
/* A||R2 = CIPH^{-1}_K(...) (see steps 2a, 2b) */
|
|
r = crypt_cipher_decrypt(cipher, cipher_in, cipher_out, 16, NULL, 0);
|
|
if (r < 0)
|
|
goto out;
|
|
a = ((uint64_t *)cipher_out)[0];
|
|
r2 = ((uint64_t *)cipher_out)[1];
|
|
|
|
/* assign previous R2 (see step 2c) */
|
|
r3 = r2_prev;
|
|
}
|
|
|
|
/* note that A||R_1||R_2 holds the result S (see step 3) */
|
|
|
|
/* CHAPTER 6.2, ALGORITHM 4: KW-AD(C) */
|
|
|
|
/* check whether MSB_{64}(S) (= A) matches ICV1 (see step 3) */
|
|
if (a != 0xA6A6A6A6A6A6A6A6) {
|
|
r = -EPERM;
|
|
goto out;
|
|
}
|
|
|
|
/* return LSB_{128}(S) (= R_1||R_2) (see step 4) */
|
|
((uint64_t *)key_buf)[0] = r2;
|
|
((uint64_t *)key_buf)[1] = r3;
|
|
out:
|
|
free(cipher_in);
|
|
free(cipher_out);
|
|
if (cipher != NULL)
|
|
crypt_cipher_destroy(cipher);
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
* Search XML plist data for a property and return its value.
|
|
* @param[in] xml a 0-terminated string containing the XML plist data
|
|
* @param[in] prop_key a 0-terminated string with the seeked property's key
|
|
* @param[in] prop_type a 0-terminated string with the seeked property's type
|
|
* @param[out] value a 0-terminated string with the found property's value
|
|
*/
|
|
static int _search_xml(
|
|
const char *xml,
|
|
const char *prop_key,
|
|
const char *prop_type,
|
|
char **value)
|
|
{
|
|
int r = 0;
|
|
char *pattern = NULL;
|
|
bool regex_ready = false;
|
|
regex_t regex;
|
|
regmatch_t match[2];
|
|
const char *value_start;
|
|
size_t value_len;
|
|
|
|
if (asprintf(&pattern, "<key>%s</key><%s[^>]*>([^<]+)</%s>",
|
|
prop_key, prop_type, prop_type) < 0) {
|
|
r = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
if (regcomp(®ex, pattern, REG_EXTENDED) != 0) {
|
|
r = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
regex_ready = true;
|
|
|
|
if (regexec(®ex, xml, 2, match, 0) != 0) {
|
|
r = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
value_start = xml + match[1].rm_so;
|
|
value_len = match[1].rm_eo - match[1].rm_so;
|
|
|
|
*value = calloc(value_len + 1, 1);
|
|
if (*value == NULL) {
|
|
r = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
memcpy(*value, value_start, value_len);
|
|
out:
|
|
free(pattern);
|
|
if (regex_ready)
|
|
regfree(®ex);
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
* Extract relevant info from a metadata block of type 0x0019.
|
|
* @param[in] md_block the pre-read and decrypted metadata block
|
|
* @param[out] pbkdf2_iters number of PBKDF2 iterations
|
|
* @param[out] pbkdf2_salt PBKDF2 salt (intermt. key derivation from passphrase)
|
|
* @param[out] wrapped_kek KEK AES-wrapped with passphrase-derived key
|
|
* @param[out] wrapped_vk volume key AES-wrapped with KEK
|
|
*/
|
|
static int _parse_metadata_block_0x0019(
|
|
const struct metadata_block_0x0019 *md_block,
|
|
uint32_t *pbkdf2_iters,
|
|
uint8_t *pbkdf2_salt,
|
|
uint8_t *wrapped_kek,
|
|
uint8_t *wrapped_vk)
|
|
{
|
|
int r = 0;
|
|
char *xml = NULL;
|
|
char *pwk_base64 = NULL;
|
|
char *kwvk_base64 = NULL;
|
|
struct passphrase_wrapped_kek *pwk = NULL;
|
|
struct kek_wrapped_volume_key *kwvk = NULL;
|
|
size_t decoded_size;
|
|
uint32_t xml_off = le32_to_cpu(md_block->xml_off);
|
|
uint32_t xml_size = le32_to_cpu(md_block->xml_size);
|
|
|
|
if (xml_off + xml_size > FVAULT2_MD_BLOCK_SIZE)
|
|
return -EINVAL;
|
|
|
|
xml = strndup((const char *)md_block + xml_off, xml_size);
|
|
if (xml == NULL)
|
|
return -ENOMEM;
|
|
|
|
r = _search_xml(xml, "PassphraseWrappedKEKStruct", "data", &pwk_base64);
|
|
if (r < 0)
|
|
goto out;
|
|
r = crypt_base64_decode((char **)&pwk, &decoded_size, pwk_base64, strlen(pwk_base64));
|
|
if (r < 0)
|
|
goto out;
|
|
if (decoded_size != FVAULT2_PWK_SIZE) {
|
|
r = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
r = _search_xml(xml, "KEKWrappedVolumeKeyStruct", "data", &kwvk_base64);
|
|
if (r < 0)
|
|
goto out;
|
|
r = crypt_base64_decode((char **)&kwvk, &decoded_size, kwvk_base64, strlen(kwvk_base64));
|
|
if (r < 0)
|
|
goto out;
|
|
if (decoded_size != FVAULT2_KWVK_SIZE) {
|
|
r = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
*pbkdf2_iters = le32_to_cpu(pwk->pbkdf2_iters);
|
|
memcpy(pbkdf2_salt, pwk->pbkdf2_salt, FVAULT2_PBKDF2_SALT_SIZE);
|
|
memcpy(wrapped_kek, pwk->wrapped_kek, FVAULT2_WRAPPED_KEY_SIZE);
|
|
memcpy(wrapped_vk, kwvk->wrapped_vk, FVAULT2_WRAPPED_KEY_SIZE);
|
|
out:
|
|
free(xml);
|
|
free(pwk_base64);
|
|
free(kwvk_base64);
|
|
free(pwk);
|
|
free(kwvk);
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
* Validate a UUID string and reformat it to match system defaults.
|
|
* @param[in] uuid_in the original UUID string
|
|
* @param[out] uuid_out the reformatted UUID string
|
|
*/
|
|
static int _reformat_uuid(
|
|
const char *uuid_in,
|
|
char *uuid_out)
|
|
{
|
|
uint8_t uuid_bin[FVAULT2_UUID_LEN];
|
|
int r;
|
|
|
|
r = uuid_parse(uuid_in, uuid_bin);
|
|
if (r < 0)
|
|
return -EINVAL;
|
|
|
|
uuid_unparse(uuid_bin, uuid_out);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Extract relevant info from a metadata block of type 0x001A.
|
|
* @param[in] md_block the pre-read and decrypted metadata block
|
|
* @param[out] log_vol_size encrypted logical volume size in bytes
|
|
* @param[out] family_uuid logical volume family UUID
|
|
*/
|
|
static int _parse_metadata_block_0x001a(
|
|
const struct metadata_block_0x001a *md_block,
|
|
uint64_t *log_vol_size,
|
|
char *family_uuid)
|
|
{
|
|
int r = 0;
|
|
char *xml = NULL;
|
|
char *log_vol_size_str = NULL;
|
|
char *family_uuid_str = NULL;
|
|
uint32_t xml_off = le32_to_cpu(md_block->xml_off);
|
|
uint32_t xml_size = le32_to_cpu(md_block->xml_size);
|
|
|
|
if (xml_off + xml_size > FVAULT2_MD_BLOCK_SIZE)
|
|
return -EINVAL;
|
|
|
|
xml = strndup((const char *)md_block + xml_off, xml_size);
|
|
if (xml == NULL)
|
|
return -ENOMEM;
|
|
|
|
r = _search_xml(xml, "com.apple.corestorage.lv.size", "integer", &log_vol_size_str);
|
|
if (r < 0)
|
|
goto out;
|
|
*log_vol_size = strtoull(log_vol_size_str, NULL, 16);
|
|
if (*log_vol_size == 0 || *log_vol_size == ULLONG_MAX) {
|
|
r = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
r = _search_xml(xml, "com.apple.corestorage.lv.familyUUID", "string", &family_uuid_str);
|
|
if (r < 0)
|
|
goto out;
|
|
r = _reformat_uuid(family_uuid_str, family_uuid);
|
|
if (r < 0)
|
|
goto out;
|
|
out:
|
|
free(xml);
|
|
free(log_vol_size_str);
|
|
free(family_uuid_str);
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
* Extract relevant info from a metadata block of type 0x0305.
|
|
* @param[in] md_block the pre-read and decrypted metadata block
|
|
* @param[out] log_vol_blkoff block-offset of the encrypted logical volume
|
|
*/
|
|
static int _parse_metadata_block_0x0305(
|
|
const struct metadata_block_0x0305 *md_block,
|
|
uint32_t *log_vol_blkoff)
|
|
{
|
|
*log_vol_blkoff = le32_to_cpu(md_block->log_vol_blkoff);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Extract relevant info from the physical volume header.
|
|
* @param[in] devfd opened device file descriptor
|
|
* @param[in] cd crypt_device passed into FVAULT2_read_metadata
|
|
* @param[out] block_size used to compute byte-offsets from block-offsets
|
|
* @param[out] disklbl_blkoff block-offset of the disk label block
|
|
* @param[out] ph_vol_uuid physical volume UUID
|
|
* @param[out] enc_md_key AES-XTS key used to decrypt the encrypted metadata
|
|
*/
|
|
static int _read_volume_header(
|
|
int devfd,
|
|
struct crypt_device *cd,
|
|
uint64_t *block_size,
|
|
uint64_t *disklbl_blkoff,
|
|
char *ph_vol_uuid,
|
|
struct volume_key **enc_md_key)
|
|
{
|
|
int r = 0;
|
|
struct device *dev = crypt_metadata_device(cd);
|
|
struct volume_header *vol_header = NULL;
|
|
void *enc_key = NULL;
|
|
|
|
assert(sizeof(*vol_header) == FVAULT2_VOL_HEADER_SIZE);
|
|
|
|
vol_header = malloc(FVAULT2_VOL_HEADER_SIZE);
|
|
if (vol_header == NULL) {
|
|
r = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
log_dbg(cd, "Reading FVAULT2 volume header of size %u bytes.", FVAULT2_VOL_HEADER_SIZE);
|
|
if (read_blockwise(devfd, device_block_size(cd, dev),
|
|
device_alignment(dev), vol_header,
|
|
FVAULT2_VOL_HEADER_SIZE) != FVAULT2_VOL_HEADER_SIZE) {
|
|
log_err(cd, _("Could not read %u bytes of volume header."), FVAULT2_VOL_HEADER_SIZE);
|
|
r = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
r = _check_crc(vol_header, FVAULT2_VOL_HEADER_SIZE);
|
|
if (r < 0) {
|
|
log_dbg(cd, "CRC mismatch.");
|
|
goto out;
|
|
}
|
|
|
|
if (le16_to_cpu(vol_header->version) != 1) {
|
|
log_err(cd, _("Unsupported FVAULT2 version %" PRIu16 "."),
|
|
le16_to_cpu(vol_header->version));
|
|
r = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (be16_to_cpu(vol_header->magic) != FVAULT2_CORE_STORAGE_MAGIC) {
|
|
log_dbg(cd, "Invalid Core Storage magic bytes.");
|
|
r = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (le32_to_cpu(vol_header->key_data_size) != FVAULT2_AES_KEY_SIZE) {
|
|
log_dbg(cd, "Unsupported AES key size: %" PRIu32 " bytes.",
|
|
le32_to_cpu(vol_header->key_data_size));
|
|
r = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
enc_key = crypt_safe_alloc(FVAULT2_XTS_KEY_SIZE);
|
|
if (!enc_key) {
|
|
r = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
*block_size = le32_to_cpu(vol_header->block_size);
|
|
*disklbl_blkoff = le64_to_cpu(vol_header->disklbl_blkoff);
|
|
uuid_unparse(vol_header->ph_vol_uuid, ph_vol_uuid);
|
|
crypt_safe_memcpy(enc_key, vol_header->key_data, FVAULT2_AES_KEY_SIZE);
|
|
crypt_safe_memcpy((char *)enc_key + FVAULT2_AES_KEY_SIZE,
|
|
vol_header->ph_vol_uuid, FVAULT2_AES_KEY_SIZE);
|
|
|
|
*enc_md_key = crypt_alloc_volume_key_by_safe_alloc(&enc_key);
|
|
if (*enc_md_key == NULL) {
|
|
crypt_safe_free(enc_key);
|
|
r = -ENOMEM;
|
|
}
|
|
out:
|
|
free(vol_header);
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
* Extract info from the disk label block and the volume groups descriptor.
|
|
* @param[in] devfd opened device file descriptor
|
|
* @param[in] cd crypt_device passed into FVAULT2_read_metadata
|
|
* @param[in] block_size used to compute byte-offsets from block-offsets
|
|
* @param[in] disklbl_blkoff block-offset of the disk label block
|
|
* @param[out] enc_md_blkoff block-offset of the encrypted metadata
|
|
* @param[out] enc_md_blocks_n total count of encrypted metadata blocks
|
|
*/
|
|
static int _read_disklabel(
|
|
int devfd,
|
|
struct crypt_device *cd,
|
|
uint64_t block_size,
|
|
uint64_t disklbl_blkoff,
|
|
uint64_t *enc_md_blkoff,
|
|
uint64_t *enc_md_blocks_n)
|
|
{
|
|
int r = 0;
|
|
uint64_t off;
|
|
ssize_t size;
|
|
void *md_block = NULL;
|
|
struct metadata_block_0x0011 *md_block_11;
|
|
struct volume_groups_descriptor *vol_gr_des = NULL;
|
|
struct device *dev = crypt_metadata_device(cd);
|
|
|
|
md_block = malloc(FVAULT2_MD_BLOCK_SIZE);
|
|
if (md_block == NULL) {
|
|
r = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
if (uint64_mult_overflow(&off, disklbl_blkoff, block_size) ||
|
|
off > FVAULT2_MAX_OFF) {
|
|
log_dbg(cd, "Device offset overflow.");
|
|
r = -EINVAL;
|
|
goto out;
|
|
}
|
|
size = FVAULT2_MD_BLOCK_SIZE;
|
|
log_dbg(cd, "Reading FVAULT2 disk label header of size %zu bytes.", size);
|
|
if (read_lseek_blockwise(devfd, device_block_size(cd, dev),
|
|
device_alignment(dev), md_block, size, off) != size) {
|
|
r = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
r = _check_crc(md_block, FVAULT2_MD_BLOCK_SIZE);
|
|
if (r < 0) {
|
|
log_dbg(cd, "CRC mismatch.");
|
|
goto out;
|
|
}
|
|
|
|
vol_gr_des = malloc(sizeof(*vol_gr_des));
|
|
if (vol_gr_des == NULL) {
|
|
r = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
md_block_11 = md_block;
|
|
off += le32_to_cpu(md_block_11->vol_gr_des_off);
|
|
if (off > FVAULT2_MAX_OFF) {
|
|
log_dbg(cd, "Device offset overflow.");
|
|
r = -EINVAL;
|
|
goto out;
|
|
}
|
|
size = sizeof(struct volume_groups_descriptor);
|
|
log_dbg(cd, "Reading FVAULT2 volume groups descriptor of size %zu bytes.", size);
|
|
if (read_lseek_blockwise(devfd, device_block_size(cd, dev),
|
|
device_alignment(dev), vol_gr_des, size, off) != size) {
|
|
r = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
*enc_md_blkoff = le64_to_cpu(vol_gr_des->enc_md_blkoff);
|
|
*enc_md_blocks_n = le64_to_cpu(vol_gr_des->enc_md_blocks_n);
|
|
out:
|
|
free(md_block);
|
|
free(vol_gr_des);
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
* Extract info from relevant encrypted metadata blocks.
|
|
* @param[in] devfd opened device file descriptor
|
|
* @param[in] cd crypt_device passed into FVAULT2_read_metadata
|
|
* @param[in] block_size used to compute byte-offsets from block-offsets
|
|
* @param[in] start_blkoff block-offset of the start of the encrypted metadata
|
|
* @param[in] blocks_n total count of encrypted metadata blocks
|
|
* @param[in] key AES-XTS key for decryption
|
|
* @param[out] params decryption parameters struct to fill
|
|
*/
|
|
static int _read_encrypted_metadata(
|
|
int devfd,
|
|
struct crypt_device *cd,
|
|
uint64_t block_size,
|
|
uint64_t start_blkoff,
|
|
uint64_t blocks_n,
|
|
const struct volume_key *key,
|
|
struct fvault2_params *params)
|
|
{
|
|
int r = 0;
|
|
int status = FVAULT2_ENC_MD_PARSED_NONE;
|
|
struct device *dev = crypt_metadata_device(cd);
|
|
struct crypt_cipher *cipher = NULL;
|
|
void *tweak;
|
|
void *md_block_enc = NULL;
|
|
void *md_block = NULL;
|
|
struct metadata_block_header *md_block_header;
|
|
uint32_t log_vol_blkoff;
|
|
uint64_t i, start_off;
|
|
off_t off;
|
|
unsigned int block_type;
|
|
|
|
tweak = calloc(FVAULT2_XTS_TWEAK_SIZE, 1);
|
|
if (tweak == NULL) {
|
|
r = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
md_block_enc = malloc(FVAULT2_MD_BLOCK_SIZE);
|
|
if (md_block_enc == NULL) {
|
|
r = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
md_block = malloc(FVAULT2_MD_BLOCK_SIZE);
|
|
if (md_block == NULL) {
|
|
r = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
r = crypt_cipher_init(&cipher, "aes", "xts", crypt_volume_key_get_key(key), FVAULT2_XTS_KEY_SIZE);
|
|
if (r < 0)
|
|
goto out;
|
|
|
|
if (uint64_mult_overflow(&start_off, start_blkoff, block_size) ||
|
|
start_off > FVAULT2_MAX_OFF) {
|
|
log_dbg(cd, "Device offset overflow.");
|
|
r = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
log_dbg(cd, "Reading FVAULT2 encrypted metadata blocks.");
|
|
for (i = 0; i < blocks_n; i++) {
|
|
off = start_off + i * FVAULT2_MD_BLOCK_SIZE;
|
|
if (off > FVAULT2_MAX_OFF) {
|
|
log_dbg(cd, "Device offset overflow.");
|
|
r = -EINVAL;
|
|
goto out;
|
|
}
|
|
if (read_lseek_blockwise(devfd, device_block_size(cd, dev),
|
|
device_alignment(dev), md_block_enc,
|
|
FVAULT2_MD_BLOCK_SIZE, off)
|
|
!= FVAULT2_MD_BLOCK_SIZE) {
|
|
r = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
if (_filled_with(0, md_block_enc, FVAULT2_MD_BLOCK_SIZE))
|
|
break;
|
|
|
|
*(uint64_t *)tweak = cpu_to_le64(i);
|
|
r = crypt_cipher_decrypt(cipher, md_block_enc, md_block,
|
|
FVAULT2_MD_BLOCK_SIZE, tweak, FVAULT2_XTS_TWEAK_SIZE);
|
|
if (r < 0)
|
|
goto out;
|
|
|
|
r = _check_crc(md_block, FVAULT2_MD_BLOCK_SIZE);
|
|
if (r < 0) {
|
|
log_dbg(cd, "CRC mismatch.");
|
|
goto out;
|
|
}
|
|
|
|
md_block_header = md_block;
|
|
block_type = le16_to_cpu(md_block_header->block_type);
|
|
switch (block_type) {
|
|
case 0x0019:
|
|
log_dbg(cd, "Get FVAULT2 metadata block %" PRIu64 " type 0x0019.", i);
|
|
r = _parse_metadata_block_0x0019(md_block,
|
|
¶ms->pbkdf2_iters,
|
|
(uint8_t *)params->pbkdf2_salt,
|
|
(uint8_t *)params->wrapped_kek,
|
|
(uint8_t *)params->wrapped_vk);
|
|
if (r < 0)
|
|
goto out;
|
|
status |= FVAULT2_ENC_MD_PARSED_0x0019;
|
|
break;
|
|
|
|
case 0x001A:
|
|
log_dbg(cd, "Get FVAULT2 metadata block %" PRIu64 " type 0x001A.", i);
|
|
r = _parse_metadata_block_0x001a(md_block,
|
|
¶ms->log_vol_size,
|
|
params->family_uuid);
|
|
if (r < 0)
|
|
goto out;
|
|
status |= FVAULT2_ENC_MD_PARSED_0x001A;
|
|
break;
|
|
|
|
case 0x0305:
|
|
log_dbg(cd, "Get FVAULT2 metadata block %" PRIu64 " type 0x0305.", i);
|
|
r = _parse_metadata_block_0x0305(md_block,
|
|
&log_vol_blkoff);
|
|
if (r < 0)
|
|
goto out;
|
|
if (uint64_mult_overflow(¶ms->log_vol_off,
|
|
log_vol_blkoff, block_size)) {
|
|
log_dbg(cd, "Device offset overflow.");
|
|
r = -EINVAL;
|
|
goto out;
|
|
}
|
|
status |= FVAULT2_ENC_MD_PARSED_0x0305;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (status != FVAULT2_ENC_MD_PARSED_ALL) {
|
|
log_dbg(cd, "Necessary FVAULT2 metadata blocks not found.");
|
|
r = -EINVAL;
|
|
goto out;
|
|
}
|
|
out:
|
|
free(tweak);
|
|
free(md_block_enc);
|
|
free(md_block);
|
|
if (cipher != NULL)
|
|
crypt_cipher_destroy(cipher);
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
* Activate device.
|
|
* @param[in] cd crypt_device struct passed into FVAULT2_activate_by_*
|
|
* @param[in] name name of the mapped device
|
|
* @param[in] vol_key the pre-derived AES-XTS volume key
|
|
* @param[in] params logical volume decryption parameters
|
|
* @param[in] flags flags assigned to the crypt_dm_active_device struct
|
|
*/
|
|
static int _activate(
|
|
struct crypt_device *cd,
|
|
const char *name,
|
|
struct volume_key *vol_key,
|
|
const struct fvault2_params *params,
|
|
uint32_t flags)
|
|
{
|
|
int r = 0;
|
|
char *cipher = NULL;
|
|
struct crypt_dm_active_device dm_dev = {
|
|
.flags = flags,
|
|
.size = params->log_vol_size / SECTOR_SIZE
|
|
};
|
|
|
|
r = device_block_adjust(cd, crypt_data_device(cd), DEV_EXCL,
|
|
crypt_get_data_offset(cd), &dm_dev.size, &dm_dev.flags);
|
|
if (r)
|
|
return r;
|
|
|
|
if (asprintf(&cipher, "%s-%s", params->cipher, params->cipher_mode) < 0)
|
|
return -ENOMEM;
|
|
|
|
r = dm_crypt_target_set(&dm_dev.segment, 0, dm_dev.size,
|
|
crypt_data_device(cd), vol_key, cipher,
|
|
crypt_get_iv_offset(cd), crypt_get_data_offset(cd),
|
|
NULL, 0, 0, crypt_get_sector_size(cd));
|
|
|
|
if (!r)
|
|
r = dm_create_device(cd, name, CRYPT_FVAULT2, &dm_dev);
|
|
|
|
dm_targets_free(cd, &dm_dev);
|
|
free(cipher);
|
|
return r;
|
|
}
|
|
|
|
int FVAULT2_read_metadata(
|
|
struct crypt_device *cd,
|
|
struct fvault2_params *params)
|
|
{
|
|
int r = 0;
|
|
int devfd;
|
|
uint64_t block_size;
|
|
uint64_t disklbl_blkoff;
|
|
uint64_t enc_md_blkoff;
|
|
uint64_t enc_md_blocks_n;
|
|
struct volume_key *enc_md_key = NULL;
|
|
struct device *device = crypt_metadata_device(cd);
|
|
|
|
devfd = device_open(cd, device, O_RDONLY);
|
|
if (devfd < 0) {
|
|
log_err(cd, _("Cannot open device %s."), device_path(device));
|
|
return -EIO;
|
|
}
|
|
|
|
r = _read_volume_header(devfd, cd, &block_size, &disklbl_blkoff,
|
|
params->ph_vol_uuid, &enc_md_key);
|
|
if (r < 0)
|
|
goto out;
|
|
|
|
r = _read_disklabel(devfd, cd, block_size, disklbl_blkoff,
|
|
&enc_md_blkoff, &enc_md_blocks_n);
|
|
if (r < 0)
|
|
goto out;
|
|
|
|
r = _read_encrypted_metadata(devfd, cd, block_size, enc_md_blkoff,
|
|
enc_md_blocks_n, enc_md_key, params);
|
|
if (r < 0)
|
|
goto out;
|
|
|
|
params->cipher = "aes";
|
|
params->cipher_mode = "xts-plain64";
|
|
params->key_size = FVAULT2_XTS_KEY_SIZE;
|
|
out:
|
|
crypt_free_volume_key(enc_md_key);
|
|
return r;
|
|
}
|
|
|
|
int FVAULT2_get_volume_key(
|
|
struct crypt_device *cd,
|
|
const char *passphrase,
|
|
size_t passphrase_len,
|
|
const struct fvault2_params *params,
|
|
struct volume_key **r_vol_key)
|
|
{
|
|
int r = 0;
|
|
uint8_t family_uuid_bin[FVAULT2_UUID_BIN_SIZE];
|
|
struct crypt_hash *hash = NULL;
|
|
void *passphrase_key = NULL, *kek = NULL, *vol_key= NULL;
|
|
|
|
*r_vol_key = NULL;
|
|
|
|
if (uuid_parse(params->family_uuid, family_uuid_bin) < 0) {
|
|
log_dbg(cd, "Could not parse logical volume family UUID: %s.",
|
|
params->family_uuid);
|
|
r = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
passphrase_key = crypt_safe_alloc(FVAULT2_AES_KEY_SIZE);
|
|
if (passphrase_key == NULL) {
|
|
r = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
r = crypt_pbkdf("pbkdf2", "sha256", passphrase, passphrase_len,
|
|
params->pbkdf2_salt, FVAULT2_PBKDF2_SALT_SIZE, passphrase_key,
|
|
FVAULT2_AES_KEY_SIZE, params->pbkdf2_iters, 0, 0);
|
|
if (r < 0)
|
|
goto out;
|
|
|
|
kek = crypt_safe_alloc(FVAULT2_AES_KEY_SIZE);
|
|
if (kek == NULL) {
|
|
r = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
r = _unwrap_key(passphrase_key, FVAULT2_AES_KEY_SIZE, params->wrapped_kek,
|
|
FVAULT2_WRAPPED_KEY_SIZE, kek, FVAULT2_AES_KEY_SIZE);
|
|
if (r < 0)
|
|
goto out;
|
|
|
|
vol_key = crypt_safe_alloc(FVAULT2_XTS_KEY_SIZE);
|
|
if (vol_key == NULL) {
|
|
r = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
r = _unwrap_key(kek, FVAULT2_AES_KEY_SIZE, params->wrapped_vk,
|
|
FVAULT2_WRAPPED_KEY_SIZE, vol_key, FVAULT2_AES_KEY_SIZE);
|
|
if (r < 0)
|
|
goto out;
|
|
|
|
r = crypt_hash_init(&hash, "sha256");
|
|
if (r < 0)
|
|
goto out;
|
|
r = crypt_hash_write(hash, vol_key, FVAULT2_AES_KEY_SIZE);
|
|
if (r < 0)
|
|
goto out;
|
|
r = crypt_hash_write(hash, (char *)family_uuid_bin,
|
|
FVAULT2_UUID_BIN_SIZE);
|
|
if (r < 0)
|
|
goto out;
|
|
r = crypt_hash_final(hash, (char *)vol_key + FVAULT2_AES_KEY_SIZE,
|
|
FVAULT2_AES_KEY_SIZE);
|
|
if (r < 0)
|
|
goto out;
|
|
|
|
*r_vol_key = crypt_alloc_volume_key_by_safe_alloc(&vol_key);
|
|
if (!*r_vol_key)
|
|
r = -ENOMEM;
|
|
out:
|
|
crypt_safe_free(passphrase_key);
|
|
crypt_safe_free(kek);
|
|
crypt_safe_free(vol_key);
|
|
if (hash != NULL)
|
|
crypt_hash_destroy(hash);
|
|
return r;
|
|
}
|
|
|
|
int FVAULT2_dump(
|
|
struct crypt_device *cd,
|
|
struct device *device,
|
|
const struct fvault2_params *params)
|
|
{
|
|
log_std(cd, "Header information for FVAULT2 device %s.\n", device_path(device));
|
|
|
|
log_std(cd, "Physical volume UUID: \t%s\n", params->ph_vol_uuid);
|
|
log_std(cd, "Family UUID: \t%s\n", params->family_uuid);
|
|
|
|
log_std(cd, "Logical volume offset:\t%" PRIu64 " [bytes]\n", params->log_vol_off);
|
|
|
|
log_std(cd, "Logical volume size: \t%" PRIu64 " [bytes]\n",
|
|
params->log_vol_size);
|
|
|
|
log_std(cd, "Cipher: \t%s\n", params->cipher);
|
|
log_std(cd, "Cipher mode: \t%s\n", params->cipher_mode);
|
|
|
|
log_std(cd, "PBKDF2 iterations: \t%" PRIu32 "\n", params->pbkdf2_iters);
|
|
|
|
log_std(cd, "PBKDF2 salt: \t");
|
|
crypt_log_hex(cd, params->pbkdf2_salt, FVAULT2_PBKDF2_SALT_SIZE, " ", 0, NULL);
|
|
log_std(cd, "\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
int FVAULT2_activate_by_volume_key(
|
|
struct crypt_device *cd,
|
|
const char *name,
|
|
struct volume_key *vk,
|
|
const struct fvault2_params *params,
|
|
uint32_t flags)
|
|
{
|
|
assert(crypt_volume_key_length(vk) == FVAULT2_XTS_KEY_SIZE);
|
|
|
|
return _activate(cd, name, vk, params, flags);
|
|
}
|
|
|
|
size_t FVAULT2_volume_key_size(void)
|
|
{
|
|
return FVAULT2_XTS_KEY_SIZE;
|
|
}
|