Files
cryptsetup/lib/crypto_backend/crypto_openssl.c
Milan Broz 25cd2b2fb7 Add Blake2b and Blake2s hash support for crypto backend.
We support most recent crypto algorithms, so this
is only addition of the Blake hash family.

Kernel and gcrypt crypto backend supports all variants,
OpenSSL only Blake2b-512 and Blake2s-256.

There is no useable support for NSS and Nettle yet.

Crypto backend supports kernel notation e.g. "blake2b-512"
that is translated to the library backend names.
2021-03-22 11:16:53 +01:00

578 lines
12 KiB
C

/*
* OPENSSL crypto backend implementation
*
* Copyright (C) 2010-2021 Red Hat, Inc. All rights reserved.
* Copyright (C) 2010-2021 Milan Broz
*
* This file is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This file is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this file; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* In addition, as a special exception, the copyright holders give
* permission to link the code of portions of this program with the
* OpenSSL library under certain conditions as described in each
* individual source file, and distribute linked combinations
* including the two.
*
* You must obey the GNU Lesser General Public License in all respects
* for all of the code used other than OpenSSL.
*/
#include <string.h>
#include <errno.h>
#include <openssl/evp.h>
#include <openssl/hmac.h>
#include <openssl/rand.h>
#include "crypto_backend_internal.h"
#define CONST_CAST(x) (x)(uintptr_t)
static int crypto_backend_initialised = 0;
struct crypt_hash {
EVP_MD_CTX *md;
const EVP_MD *hash_id;
int hash_len;
};
struct crypt_hmac {
HMAC_CTX *md;
const EVP_MD *hash_id;
int hash_len;
};
struct crypt_cipher {
bool use_kernel;
union {
struct crypt_cipher_kernel kernel;
struct {
EVP_CIPHER_CTX *hd_enc;
EVP_CIPHER_CTX *hd_dec;
size_t iv_length;
} lib;
} u;
};
struct hash_alg {
const char *name;
const char *openssl_name;
};
/*
* Compatible wrappers for OpenSSL < 1.1.0 and LibreSSL < 2.7.0
*/
#if OPENSSL_VERSION_NUMBER < 0x10100000L || \
(defined(LIBRESSL_VERSION_NUMBER) && LIBRESSL_VERSION_NUMBER < 0x2070000fL)
static void openssl_backend_init(void)
{
OpenSSL_add_all_algorithms();
}
static const char *openssl_backend_version(void)
{
return SSLeay_version(SSLEAY_VERSION);
}
static EVP_MD_CTX *EVP_MD_CTX_new(void)
{
EVP_MD_CTX *md = malloc(sizeof(*md));
if (md)
EVP_MD_CTX_init(md);
return md;
}
static void EVP_MD_CTX_free(EVP_MD_CTX *md)
{
EVP_MD_CTX_cleanup(md);
free(md);
}
static HMAC_CTX *HMAC_CTX_new(void)
{
HMAC_CTX *md = malloc(sizeof(*md));
if (md)
HMAC_CTX_init(md);
return md;
}
static void HMAC_CTX_free(HMAC_CTX *md)
{
HMAC_CTX_cleanup(md);
free(md);
}
#else
static void openssl_backend_init(void)
{
}
static const char *openssl_backend_version(void)
{
return OpenSSL_version(OPENSSL_VERSION);
}
#endif
int crypt_backend_init(void)
{
if (crypto_backend_initialised)
return 0;
openssl_backend_init();
crypto_backend_initialised = 1;
return 0;
}
void crypt_backend_destroy(void)
{
crypto_backend_initialised = 0;
}
uint32_t crypt_backend_flags(void)
{
return 0;
}
const char *crypt_backend_version(void)
{
return openssl_backend_version();
}
static const char *crypt_hash_compat_name(const char *name)
{
const char *hash_name = name;
int i;
static struct hash_alg hash_algs[] = {
{ "blake2b-512", "blake2b512" },
{ "blake2s-256", "blake2s256" },
{ NULL, NULL, }};
if (!name)
return NULL;
i = 0;
while (hash_algs[i].name) {
if (!strcasecmp(name, hash_algs[i].name)) {
hash_name = hash_algs[i].openssl_name;
break;
}
i++;
}
return hash_name;
}
/* HASH */
int crypt_hash_size(const char *name)
{
const EVP_MD *hash_id;
hash_id = EVP_get_digestbyname(crypt_hash_compat_name(name));
if (!hash_id)
return -EINVAL;
return EVP_MD_size(hash_id);
}
int crypt_hash_init(struct crypt_hash **ctx, const char *name)
{
struct crypt_hash *h;
h = malloc(sizeof(*h));
if (!h)
return -ENOMEM;
h->md = EVP_MD_CTX_new();
if (!h->md) {
free(h);
return -ENOMEM;
}
h->hash_id = EVP_get_digestbyname(crypt_hash_compat_name(name));
if (!h->hash_id) {
EVP_MD_CTX_free(h->md);
free(h);
return -EINVAL;
}
if (EVP_DigestInit_ex(h->md, h->hash_id, NULL) != 1) {
EVP_MD_CTX_free(h->md);
free(h);
return -EINVAL;
}
h->hash_len = EVP_MD_size(h->hash_id);
*ctx = h;
return 0;
}
static int crypt_hash_restart(struct crypt_hash *ctx)
{
if (EVP_DigestInit_ex(ctx->md, ctx->hash_id, NULL) != 1)
return -EINVAL;
return 0;
}
int crypt_hash_write(struct crypt_hash *ctx, const char *buffer, size_t length)
{
if (EVP_DigestUpdate(ctx->md, buffer, length) != 1)
return -EINVAL;
return 0;
}
int crypt_hash_final(struct crypt_hash *ctx, char *buffer, size_t length)
{
unsigned char tmp[EVP_MAX_MD_SIZE];
unsigned int tmp_len = 0;
if (length > (size_t)ctx->hash_len)
return -EINVAL;
if (EVP_DigestFinal_ex(ctx->md, tmp, &tmp_len) != 1)
return -EINVAL;
memcpy(buffer, tmp, length);
crypt_backend_memzero(tmp, sizeof(tmp));
if (tmp_len < length)
return -EINVAL;
if (crypt_hash_restart(ctx))
return -EINVAL;
return 0;
}
void crypt_hash_destroy(struct crypt_hash *ctx)
{
EVP_MD_CTX_free(ctx->md);
memset(ctx, 0, sizeof(*ctx));
free(ctx);
}
/* HMAC */
int crypt_hmac_size(const char *name)
{
return crypt_hash_size(name);
}
int crypt_hmac_init(struct crypt_hmac **ctx, const char *name,
const void *key, size_t key_length)
{
struct crypt_hmac *h;
h = malloc(sizeof(*h));
if (!h)
return -ENOMEM;
h->md = HMAC_CTX_new();
if (!h->md) {
free(h);
return -ENOMEM;
}
h->hash_id = EVP_get_digestbyname(crypt_hash_compat_name(name));
if (!h->hash_id) {
HMAC_CTX_free(h->md);
free(h);
return -EINVAL;
}
HMAC_Init_ex(h->md, key, key_length, h->hash_id, NULL);
h->hash_len = EVP_MD_size(h->hash_id);
*ctx = h;
return 0;
}
static void crypt_hmac_restart(struct crypt_hmac *ctx)
{
HMAC_Init_ex(ctx->md, NULL, 0, ctx->hash_id, NULL);
}
int crypt_hmac_write(struct crypt_hmac *ctx, const char *buffer, size_t length)
{
HMAC_Update(ctx->md, (const unsigned char *)buffer, length);
return 0;
}
int crypt_hmac_final(struct crypt_hmac *ctx, char *buffer, size_t length)
{
unsigned char tmp[EVP_MAX_MD_SIZE];
unsigned int tmp_len = 0;
if (length > (size_t)ctx->hash_len)
return -EINVAL;
HMAC_Final(ctx->md, tmp, &tmp_len);
memcpy(buffer, tmp, length);
crypt_backend_memzero(tmp, sizeof(tmp));
if (tmp_len < length)
return -EINVAL;
crypt_hmac_restart(ctx);
return 0;
}
void crypt_hmac_destroy(struct crypt_hmac *ctx)
{
HMAC_CTX_free(ctx->md);
memset(ctx, 0, sizeof(*ctx));
free(ctx);
}
/* RNG */
int crypt_backend_rng(char *buffer, size_t length,
int quality __attribute__((unused)), int fips __attribute__((unused)))
{
if (RAND_bytes((unsigned char *)buffer, length) != 1)
return -EINVAL;
return 0;
}
/* PBKDF */
int crypt_pbkdf(const char *kdf, const char *hash,
const char *password, size_t password_length,
const char *salt, size_t salt_length,
char *key, size_t key_length,
uint32_t iterations, uint32_t memory, uint32_t parallel)
{
const EVP_MD *hash_id;
if (!kdf)
return -EINVAL;
if (!strcmp(kdf, "pbkdf2")) {
hash_id = EVP_get_digestbyname(crypt_hash_compat_name(hash));
if (!hash_id)
return -EINVAL;
if (!PKCS5_PBKDF2_HMAC(password, (int)password_length,
(const unsigned char *)salt, (int)salt_length,
(int)iterations, hash_id, (int)key_length, (unsigned char *)key))
return -EINVAL;
return 0;
} else if (!strncmp(kdf, "argon2", 6)) {
return argon2(kdf, password, password_length, salt, salt_length,
key, key_length, iterations, memory, parallel);
}
return -EINVAL;
}
/* Block ciphers */
static void _cipher_destroy(EVP_CIPHER_CTX **hd_enc, EVP_CIPHER_CTX **hd_dec)
{
EVP_CIPHER_CTX_free(*hd_enc);
*hd_enc = NULL;
EVP_CIPHER_CTX_free(*hd_dec);
*hd_dec = NULL;
}
static int _cipher_init(EVP_CIPHER_CTX **hd_enc, EVP_CIPHER_CTX **hd_dec, const char *name,
const char *mode, const void *key, size_t key_length, size_t *iv_length)
{
char cipher_name[256];
const EVP_CIPHER *type;
int r, key_bits;
key_bits = key_length * 8;
if (!strcmp(mode, "xts"))
key_bits /= 2;
r = snprintf(cipher_name, sizeof(cipher_name), "%s-%d-%s", name, key_bits, mode);
if (r < 0 || r >= (int)sizeof(cipher_name))
return -EINVAL;
type = EVP_get_cipherbyname(cipher_name);
if (!type)
return -ENOENT;
if (EVP_CIPHER_key_length(type) != (int)key_length)
return -EINVAL;
*hd_enc = EVP_CIPHER_CTX_new();
*hd_dec = EVP_CIPHER_CTX_new();
*iv_length = EVP_CIPHER_iv_length(type);
if (!*hd_enc || !*hd_dec)
return -EINVAL;
if (EVP_EncryptInit_ex(*hd_enc, type, NULL, key, NULL) != 1 ||
EVP_DecryptInit_ex(*hd_dec, type, NULL, key, NULL) != 1) {
_cipher_destroy(hd_enc, hd_dec);
return -EINVAL;
}
if (EVP_CIPHER_CTX_set_padding(*hd_enc, 0) != 1 ||
EVP_CIPHER_CTX_set_padding(*hd_dec, 0) != 1) {
_cipher_destroy(hd_enc, hd_dec);
return -EINVAL;
}
return 0;
}
int crypt_cipher_init(struct crypt_cipher **ctx, const char *name,
const char *mode, const void *key, size_t key_length)
{
struct crypt_cipher *h;
int r;
h = malloc(sizeof(*h));
if (!h)
return -ENOMEM;
if (!_cipher_init(&h->u.lib.hd_enc, &h->u.lib.hd_dec, name, mode, key,
key_length, &h->u.lib.iv_length)) {
h->use_kernel = false;
*ctx = h;
return 0;
}
r = crypt_cipher_init_kernel(&h->u.kernel, name, mode, key, key_length);
if (r < 0) {
free(h);
return r;
}
h->use_kernel = true;
*ctx = h;
return 0;
}
void crypt_cipher_destroy(struct crypt_cipher *ctx)
{
if (ctx->use_kernel)
crypt_cipher_destroy_kernel(&ctx->u.kernel);
else
_cipher_destroy(&ctx->u.lib.hd_enc, &ctx->u.lib.hd_dec);
free(ctx);
}
static int _cipher_encrypt(struct crypt_cipher *ctx, const unsigned char *in, unsigned char *out,
int length, const unsigned char *iv, size_t iv_length)
{
int len;
if (ctx->u.lib.iv_length != iv_length)
return -EINVAL;
if (EVP_EncryptInit_ex(ctx->u.lib.hd_enc, NULL, NULL, NULL, iv) != 1)
return -EINVAL;
if (EVP_EncryptUpdate(ctx->u.lib.hd_enc, out, &len, in, length) != 1)
return -EINVAL;
if (EVP_EncryptFinal(ctx->u.lib.hd_enc, out + len, &len) != 1)
return -EINVAL;
return 0;
}
static int _cipher_decrypt(struct crypt_cipher *ctx, const unsigned char *in, unsigned char *out,
int length, const unsigned char *iv, size_t iv_length)
{
int len;
if (ctx->u.lib.iv_length != iv_length)
return -EINVAL;
if (EVP_DecryptInit_ex(ctx->u.lib.hd_dec, NULL, NULL, NULL, iv) != 1)
return -EINVAL;
if (EVP_DecryptUpdate(ctx->u.lib.hd_dec, out, &len, in, length) != 1)
return -EINVAL;
if (EVP_DecryptFinal(ctx->u.lib.hd_dec, out + len, &len) != 1)
return -EINVAL;
return 0;
}
int crypt_cipher_encrypt(struct crypt_cipher *ctx,
const char *in, char *out, size_t length,
const char *iv, size_t iv_length)
{
if (ctx->use_kernel)
return crypt_cipher_encrypt_kernel(&ctx->u.kernel, in, out, length, iv, iv_length);
return _cipher_encrypt(ctx, (const unsigned char*)in,
(unsigned char *)out, length, (const unsigned char*)iv, iv_length);
}
int crypt_cipher_decrypt(struct crypt_cipher *ctx,
const char *in, char *out, size_t length,
const char *iv, size_t iv_length)
{
if (ctx->use_kernel)
return crypt_cipher_decrypt_kernel(&ctx->u.kernel, in, out, length, iv, iv_length);
return _cipher_decrypt(ctx, (const unsigned char*)in,
(unsigned char *)out, length, (const unsigned char*)iv, iv_length);
}
bool crypt_cipher_kernel_only(struct crypt_cipher *ctx)
{
return ctx->use_kernel;
}
int crypt_bitlk_decrypt_key(const void *key, size_t key_length __attribute__((unused)),
const char *in, char *out, size_t length,
const char *iv, size_t iv_length,
const char *tag, size_t tag_length)
{
#ifdef EVP_CTRL_CCM_SET_IVLEN
EVP_CIPHER_CTX *ctx;
int len = 0, r = -EINVAL;
ctx = EVP_CIPHER_CTX_new();
if (!ctx)
return -EINVAL;
if (EVP_DecryptInit_ex(ctx, EVP_aes_256_ccm(), NULL, NULL, NULL) != 1)
goto out;
//EVP_CIPHER_CTX_key_length(ctx)
//EVP_CIPHER_CTX_iv_length(ctx)
if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_SET_IVLEN, iv_length, NULL) != 1)
goto out;
if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_SET_TAG, tag_length, CONST_CAST(void*)tag) != 1)
goto out;
if (EVP_DecryptInit_ex(ctx, NULL, NULL, key, (const unsigned char*)iv) != 1)
goto out;
if (EVP_DecryptUpdate(ctx, (unsigned char*)out, &len, (const unsigned char*)in, length) == 1)
r = 0;
out:
EVP_CIPHER_CTX_free(ctx);
return r;
#else
return -ENOTSUP;
#endif
}