Files
cryptsetup/tests/unit-utils-crypt.c
Milan Broz 7b5ac650e5 Allow specific integrity key size.
This patch add support for setting of integrity key size
for LUKS2 devices.

It adds new (optional) JSON "key_size" attribute in segment.integrity JSON object.
If not set, the code use hash length size (backward compatible).

For LUKS2, we do not allow smaller keys than 128 bits.

Mostly based on code from Ingo Franzki <ifranzki@linux.ibm.com>
2024-12-03 20:25:54 +01:00

247 lines
6.6 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* cryptsetup crypto name and hex conversion helper test vectors
*
* Copyright (C) 2022-2024 Milan Broz
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "utils_crypt.h"
#include "libcryptsetup.h"
#ifndef ARRAY_SIZE
# define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
#endif
/*
* Cryptsetup/dm-crypt algorithm naming conversion test
*/
struct mode_test_vector {
const char *input;
const char *cipher;
const char *mode;
int keys;
};
static struct mode_test_vector mode_test_vectors[] = {
{ "aes-xts-plain", "aes", "xts-plain", 1 },
{ "aes-xts-plain64", "aes", "xts-plain64", 1 },
{ "aes-cbc-plain", "aes", "cbc-plain", 1 },
{ "aes-cbc-plain64", "aes", "cbc-plain64", 1 },
{ "aes-cbc-essiv:sha256", "aes", "cbc-essiv:sha256", 1 },
{ "aes", "aes", "cbc-plain", 1 },
{ "twofish", "twofish", "cbc-plain", 1 },
{ "cipher_null", "cipher_null", "ecb", 0 },
{ "null", "cipher_null", "ecb", 0 },
{ "xchacha12,aes-adiantum-plain64", "xchacha12,aes", "adiantum-plain64", 1 },
{ "xchacha20,aes-adiantum-plain64", "xchacha20,aes", "adiantum-plain64", 1 },
{ "aes:64-cbc-lmk", "aes:64", "cbc-lmk", 64 },
{ "des3_ede-cbc-tcw", "des3_ede" ,"cbc-tcw", 1 },
{ "aes-lrw-benbi", "aes","lrw-benbi", 1 },
};
static int test_parse_mode(void)
{
char cipher[MAX_CIPHER_LEN], mode[MAX_CIPHER_LEN];
unsigned int i;
int keys;
printf("MODECONV:");
for (i = 0; i < ARRAY_SIZE(mode_test_vectors); i++) {
if (i && !(i % 8))
printf("\n");
keys = -1;
memset(cipher, 0, sizeof(cipher));
memset(mode, 0, sizeof(mode));
printf("[%s]", mode_test_vectors[i].input ?: "NULL");
if (crypt_parse_name_and_mode(mode_test_vectors[i].input, cipher, &keys, mode) < 0 ||
strcmp(mode_test_vectors[i].cipher, cipher) ||
strcmp(mode_test_vectors[i].mode, mode) ||
mode_test_vectors[i].keys != keys) {
printf("[FAILED (%s / %s / %i)]\n", cipher, mode, keys);
return EXIT_FAILURE;
}
}
printf("[OK]\n");
return EXIT_SUCCESS;
}
/*
* Cryptsetup/dm-crypt/dm-integrity algorithm naming conversion test
*/
struct integrity_test_vector {
bool int_mode; /* non-null if it is supported as integrity mode for LUKS2 */
const char *input;
const char *integrity;
int key_size;
};
static struct integrity_test_vector integrity_test_vectors[] = {
{ true, "aead", "aead", 0 },
{ true, "poly1305", "poly1305", 0 },
{ true, "none", "none", 0 },
{ false, "crc32", "crc32", 0 },
{ true, "hmac-sha1", "hmac(sha1)", 20 },
{ true, "hmac-sha256", "hmac(sha256)", 32 },
{ true, "hmac-sha512", "hmac(sha512)", 64 },
{ true, "cmac-aes", "cmac(aes)", 16 },
{ false, "blake2b-256", "blake2b-256", 0 },
};
static int test_parse_integrity_mode(void)
{
char integrity[MAX_CIPHER_LEN];
unsigned int i;
int key_size;
printf("INTEGRITYCONV:");
for (i = 0; i < ARRAY_SIZE(integrity_test_vectors); i++) {
memset(integrity, 0, sizeof(integrity));
printf("[%s,%i]", integrity_test_vectors[i].input ?: "NULL", integrity_test_vectors[i].key_size);
if (crypt_parse_hash_integrity_mode(integrity_test_vectors[i].input, integrity) < 0 ||
strcmp(integrity_test_vectors[i].integrity, integrity)) {
printf("[FAILED (%s)]\n", integrity);
return EXIT_FAILURE;
}
key_size = -1;
memset(integrity, 0, sizeof(integrity));
if (integrity_test_vectors[i].int_mode &&
(crypt_parse_integrity_mode(integrity_test_vectors[i].input, integrity, &key_size, 0) < 0 ||
strcmp(integrity_test_vectors[i].integrity, integrity) ||
integrity_test_vectors[i].key_size != key_size)) {
printf("[FAILED (%s / %i)]\n", integrity, key_size);
return EXIT_FAILURE;
}
}
printf("[OK]\n");
return EXIT_SUCCESS;
}
/*
* Cryptsetup null cipher bypass algorithm name
*/
struct null_test_vector {
const char *cipher;
bool ok;
};
static struct null_test_vector null_test_vectors[] = {
{ "cipher_null-ecb", true },
{ "cipher_null", true },
{ "null", true },
{ "cipher-null", false },
{ "aes-ecb", false },
{ NULL, false },
};
static int test_cipher_null(void)
{
unsigned int i;
printf("NULLCONV:");
for (i = 0; i < ARRAY_SIZE(null_test_vectors); i++) {
printf("[%s]", null_test_vectors[i].cipher ?: "NULL");
if (crypt_is_cipher_null(null_test_vectors[i].cipher) !=
null_test_vectors[i].ok) {
printf("[FAILED]\n");
return EXIT_FAILURE;
}
}
printf("[OK]\n");
return EXIT_SUCCESS;
}
struct hex_test_vector {
const char *hex;
const char *bytes;
ssize_t bytes_size;
bool ok;
};
static struct hex_test_vector hex_test_vectors[] = {
{ "0000000000000000", "\x00\x00\x00\x00\x00\x00\x00\x00", 8, true },
{ "abcdef0123456789", "\xab\xcd\xef\x01\x23\x45\x67\x89", 8, true },
{ "aBCDef0123456789", "\xab\xcd\xef\x01\x23\x45\x67\x89", 8, true },
{ "ff", "\xff", 1, true },
{ "f", NULL , 1, false },
{ "a-cde", NULL, 2, false },
{ "FAKE", NULL, 2, false },
{ "\x01\x02\xff", NULL, 3, false },
{ NULL, NULL, 1, false },
{ "fff", NULL, 2, false },
{ "fg", NULL, 1, false },
};
/*
* Hexa conversion test (also should be constant time)
*/
static int test_hex_conversion(void)
{
char *bytes, *hex;
ssize_t len;
unsigned int i;
printf("HEXCONV:");
for (i = 0; i < ARRAY_SIZE(hex_test_vectors); i++) {
bytes = NULL;
hex = NULL;
if (hex_test_vectors[i].hex && *hex_test_vectors[i].hex >= '0')
printf("[%s]", hex_test_vectors[i].hex);
else
printf("[INV:%i]", i);
len = crypt_hex_to_bytes(hex_test_vectors[i].hex, &bytes, 1);
if ((hex_test_vectors[i].ok && len != hex_test_vectors[i].bytes_size) ||
(!hex_test_vectors[i].ok && len >= 0)) {
printf("[FAILED]\n");
crypt_safe_free(bytes);
return EXIT_FAILURE;
}
crypt_safe_free(bytes);
hex = crypt_bytes_to_hex(hex_test_vectors[i].bytes_size, hex_test_vectors[i].bytes);
if ((hex_test_vectors[i].ok && strcasecmp(hex, hex_test_vectors[i].hex)) ||
(!hex_test_vectors[i].ok && hex)) {
printf("[FAILED]\n");
crypt_safe_free(hex);
return EXIT_FAILURE;
}
crypt_safe_free(hex);
}
printf("[OK]\n");
return EXIT_SUCCESS;
}
static void __attribute__((noreturn)) exit_test(const char *msg, int r)
{
if (msg)
printf("%s\n", msg);
exit(r);
}
int main(__attribute__ ((unused)) int argc, __attribute__ ((unused))char *argv[])
{
setvbuf(stdout, NULL, _IONBF, 0);
#ifndef NO_CRYPTSETUP_PATH
if (getenv("CRYPTSETUP_PATH")) {
printf("Cannot run this test with CRYPTSETUP_PATH set.\n");
exit(77);
}
#endif
if (test_parse_mode())
exit_test("Parse mode test failed.", EXIT_FAILURE);
if (test_parse_integrity_mode())
exit_test("Parse integrity mode test failed.", EXIT_FAILURE);
if (test_cipher_null())
exit_test("CIPHER null test failed.", EXIT_FAILURE);
if (test_hex_conversion())
exit_test("HEX conversion test failed.", EXIT_FAILURE);
exit_test(NULL, EXIT_SUCCESS);
}