Files
cryptsetup/lib/setup.c

2020 lines
47 KiB
C

/*
* libcryptsetup - cryptsetup library
*
* Copyright (C) 2004, Christophe Saout <christophe@saout.de>
* Copyright (C) 2004-2007, Clemens Fruhwirth <clemens@endorphin.org>
* Copyright (C) 2009-2011, Red Hat, Inc. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <fcntl.h>
#include <errno.h>
#include "libcryptsetup.h"
#include "luks.h"
#include "loopaes.h"
#include "internal.h"
#include "crypto_backend.h"
struct crypt_device {
char *type;
char *device;
char *metadata_device;
char *backing_file;
int loop_fd;
struct volume_key *volume_key;
uint64_t timeout;
uint64_t iteration_time;
int tries;
int password_verify;
int rng_type;
/* used in CRYPT_LUKS1 */
struct luks_phdr hdr;
uint64_t PBKDF2_per_sec;
/* used in CRYPT_PLAIN */
struct crypt_params_plain plain_hdr;
char *plain_cipher;
char *plain_cipher_mode;
char *plain_uuid;
/* used in CRYPT_LOOPAES */
struct crypt_params_loopaes loopaes_hdr;
char *loopaes_cipher;
char *loopaes_cipher_mode;
char *loopaes_uuid;
unsigned int loopaes_key_size;
/* callbacks definitions */
void (*log)(int level, const char *msg, void *usrptr);
void *log_usrptr;
int (*confirm)(const char *msg, void *usrptr);
void *confirm_usrptr;
int (*password)(const char *msg, char *buf, size_t length, void *usrptr);
void *password_usrptr;
};
/* Log helper */
static void (*_default_log)(int level, const char *msg, void *usrptr) = NULL;
static int _debug_level = 0;
void crypt_set_debug_level(int level)
{
_debug_level = level;
}
int crypt_get_debug_level(void)
{
return _debug_level;
}
void crypt_log(struct crypt_device *cd, int level, const char *msg)
{
if (cd && cd->log)
cd->log(level, msg, cd->log_usrptr);
else if (_default_log)
_default_log(level, msg, NULL);
}
__attribute__((format(printf, 5, 6)))
void logger(struct crypt_device *cd, int level, const char *file,
int line, const char *format, ...)
{
va_list argp;
char *target = NULL;
va_start(argp, format);
if (vasprintf(&target, format, argp) > 0) {
if (level >= 0) {
crypt_log(cd, level, target);
#ifdef CRYPT_DEBUG
} else if (_debug_level)
printf("# %s:%d %s\n", file ?: "?", line, target);
#else
} else if (_debug_level)
printf("# %s\n", target);
#endif
}
va_end(argp);
free(target);
}
static const char *mdata_device(struct crypt_device *cd)
{
return cd->metadata_device ?: cd->device;
}
static int init_crypto(struct crypt_device *ctx)
{
int r;
r = crypt_random_init(ctx);
if (r < 0) {
log_err(ctx, _("Cannot initialize crypto RNG backend.\n"));
return r;
}
r = crypt_backend_init(ctx);
if (r < 0)
log_err(ctx, _("Cannot initialize crypto backend.\n"));
return r;
}
static int process_key(struct crypt_device *cd, const char *hash_name,
size_t key_size, const char *pass, size_t passLen,
struct volume_key **vk)
{
int r;
if (!key_size)
return -EINVAL;
*vk = crypt_alloc_volume_key(key_size, NULL);
if (!*vk)
return -ENOMEM;
if (hash_name) {
r = crypt_plain_hash(cd, hash_name, (*vk)->key, key_size, pass, passLen);
if (r < 0) {
if (r == -ENOENT)
log_err(cd, _("Hash algorithm %s not supported.\n"),
hash_name);
else
log_err(cd, _("Key processing error (using hash %s).\n"),
hash_name);
crypt_free_volume_key(*vk);
*vk = NULL;
return -EINVAL;
}
} else if (passLen > key_size) {
memcpy((*vk)->key, pass, key_size);
} else {
memcpy((*vk)->key, pass, passLen);
}
return 0;
}
static int isPLAIN(const char *type)
{
return (type && !strcmp(CRYPT_PLAIN, type));
}
static int isLUKS(const char *type)
{
return (type && !strcmp(CRYPT_LUKS1, type));
}
static int isLOOPAES(const char *type)
{
return (type && !strcmp(CRYPT_LOOPAES, type));
}
/* keyslot helpers */
static int keyslot_verify_or_find_empty(struct crypt_device *cd, int *keyslot)
{
if (*keyslot == CRYPT_ANY_SLOT) {
*keyslot = LUKS_keyslot_find_empty(&cd->hdr);
if (*keyslot < 0) {
log_err(cd, _("All key slots full.\n"));
return -EINVAL;
}
}
switch (LUKS_keyslot_info(&cd->hdr, *keyslot)) {
case CRYPT_SLOT_INVALID:
log_err(cd, _("Key slot %d is invalid, please select between 0 and %d.\n"),
*keyslot, LUKS_NUMKEYS - 1);
return -EINVAL;
case CRYPT_SLOT_INACTIVE:
break;
default:
log_err(cd, _("Key slot %d is full, please select another one.\n"),
*keyslot);
return -EINVAL;
}
return 0;
}
/*
* compares UUIDs returned by device-mapper (striped by cryptsetup) and uuid in header
*/
static int crypt_uuid_cmp(const char *dm_uuid, const char *hdr_uuid)
{
int i, j;
char *str;
if (!dm_uuid || !hdr_uuid)
return -EINVAL;
str = strchr(dm_uuid, '-');
if (!str)
return -EINVAL;
for (i = 0, j = 1; hdr_uuid[i]; i++) {
if (hdr_uuid[i] == '-')
continue;
if (!str[j] || str[j] == '-')
return -EINVAL;
if (str[j] != hdr_uuid[i])
return -EINVAL;
j++;
}
return 0;
}
int PLAIN_activate(struct crypt_device *cd,
const char *name,
struct volume_key *vk,
uint64_t size,
uint32_t flags)
{
int r;
char *dm_cipher = NULL;
struct crypt_dm_active_device dmd = {
.device = crypt_get_device_name(cd),
.cipher = NULL,
.uuid = crypt_get_uuid(cd),
.vk = vk,
.offset = crypt_get_data_offset(cd),
.iv_offset = crypt_get_iv_offset(cd),
.size = size,
.flags = flags
};
r = device_check_and_adjust(cd, dmd.device,
(dmd.flags & CRYPT_ACTIVATE_SHARED) ? DEV_SHARED : DEV_EXCL,
&dmd.size, &dmd.offset, &flags);
if (r)
return r;
if (crypt_get_cipher_mode(cd))
r = asprintf(&dm_cipher, "%s-%s", crypt_get_cipher(cd), crypt_get_cipher_mode(cd));
else
r = asprintf(&dm_cipher, "%s", crypt_get_cipher(cd));
if (r < 0)
return -ENOMEM;
dmd.cipher = dm_cipher;
log_dbg("Trying to activate PLAIN device %s using cipher %s.", name, dmd.cipher);
r = dm_create_device(name, CRYPT_PLAIN, &dmd, 0);
// FIXME
if (!cd->plain_uuid && dm_query_device(name, DM_ACTIVE_UUID, &dmd) >= 0)
cd->plain_uuid = CONST_CAST(char*)dmd.uuid;
free(dm_cipher);
return r;
}
int crypt_confirm(struct crypt_device *cd, const char *msg)
{
if (!cd || !cd->confirm)
return 1;
else
return cd->confirm(msg, cd->confirm_usrptr);
}
static int key_from_terminal(struct crypt_device *cd, char *msg, char **key,
size_t *key_len, int force_verify)
{
char *prompt = NULL;
int r;
*key = NULL;
if(!msg && asprintf(&prompt, _("Enter passphrase for %s: "),
cd->backing_file ?: crypt_get_device_name(cd)) < 0)
return -ENOMEM;
if (!msg)
msg = prompt;
if (cd->password) {
*key = crypt_safe_alloc(DEFAULT_PASSPHRASE_SIZE_MAX);
if (!*key) {
r = -ENOMEM;
goto out;
}
r = cd->password(msg, *key, DEFAULT_PASSPHRASE_SIZE_MAX,
cd->password_usrptr);
if (r < 0) {
crypt_safe_free(*key);
*key = NULL;
} else
*key_len = r;
} else
r = crypt_get_key(msg, key, key_len, 0, NULL, cd->timeout,
(force_verify || cd->password_verify), cd);
out:
free(prompt);
return (r < 0) ? r: 0;
}
static int volume_key_by_terminal_passphrase(struct crypt_device *cd, int keyslot,
struct volume_key **vk)
{
char *passphrase_read = NULL;
size_t passphrase_size_read;
int r = -EINVAL, eperm = 0, tries = cd->tries;
*vk = NULL;
do {
crypt_free_volume_key(*vk);
*vk = NULL;
r = key_from_terminal(cd, NULL, &passphrase_read,
&passphrase_size_read, 0);
if(r < 0)
goto out;
r = LUKS_open_key_with_hdr(mdata_device(cd), keyslot, passphrase_read,
passphrase_size_read, &cd->hdr, vk, cd);
if (r == -EPERM)
eperm = 1;
crypt_safe_free(passphrase_read);
passphrase_read = NULL;
} while (r == -EPERM && (--tries > 0));
out:
if (r < 0) {
crypt_free_volume_key(*vk);
*vk = NULL;
/* Report wrong passphrase if at least one try failed */
if (eperm && r == -EPIPE)
r = -EPERM;
}
crypt_safe_free(passphrase_read);
return r;
}
static int key_from_file(struct crypt_device *cd, char *msg,
char **key, size_t *key_len,
const char *key_file, size_t key_size)
{
return crypt_get_key(msg, key, key_len, key_size, key_file,
cd->timeout, 0, cd);
}
void crypt_set_log_callback(struct crypt_device *cd,
void (*log)(int level, const char *msg, void *usrptr),
void *usrptr)
{
if (!cd)
_default_log = log;
else {
cd->log = log;
cd->log_usrptr = usrptr;
}
}
void crypt_set_confirm_callback(struct crypt_device *cd,
int (*confirm)(const char *msg, void *usrptr),
void *usrptr)
{
cd->confirm = confirm;
cd->confirm_usrptr = usrptr;
}
void crypt_set_password_callback(struct crypt_device *cd,
int (*password)(const char *msg, char *buf, size_t length, void *usrptr),
void *usrptr)
{
cd->password = password;
cd->password_usrptr = usrptr;
}
void crypt_get_error(char *buf, size_t size)
{
const char *error = get_error();
if (!buf || size < 1)
set_error(NULL);
else if (error) {
strncpy(buf, error, size - 1);
buf[size - 1] = '\0';
set_error(NULL);
} else
buf[0] = '\0';
}
const char *crypt_get_dir(void)
{
return dm_get_dir();
}
int crypt_init(struct crypt_device **cd, const char *device)
{
struct crypt_device *h = NULL;
int r, readonly = 0;
if (!cd)
return -EINVAL;
log_dbg("Allocating crypt device %s context.", device);
if (!(h = malloc(sizeof(struct crypt_device))))
return -ENOMEM;
memset(h, 0, sizeof(*h));
h->loop_fd = -1;
if (device) {
r = device_ready(NULL, device, O_RDONLY);
if (r == -ENOTBLK) {
h->device = crypt_loop_get_device();
log_dbg("Not a block device, %s%s.",
h->device ? "using free loop device " :
"no free loop device found",
h->device ?: "");
if (!h->device) {
log_err(NULL, _("Cannot find a free loopback device.\n"));
r = -ENOSYS;
goto bad;
}
/* Keep the loop open, dettached on last close. */
h->loop_fd = crypt_loop_attach(h->device, device, 0, 1, &readonly);
if (h->loop_fd == -1) {
log_err(NULL, _("Attaching loopback device failed "
"(loop device with autoclear flag is required).\n"));
r = -EINVAL;
goto bad;
}
h->backing_file = crypt_loop_backing_file(h->device);
r = device_ready(NULL, h->device, O_RDONLY);
}
if (r < 0) {
r = -ENOTBLK;
goto bad;
}
}
if (!h->device && device && !(h->device = strdup(device))) {
r = -ENOMEM;
goto bad;
}
if (dm_init(h, 1) < 0) {
r = -ENOSYS;
goto bad;
}
h->iteration_time = 1000;
h->password_verify = 0;
h->tries = 3;
h->rng_type = crypt_random_default_key_rng();
*cd = h;
return 0;
bad:
if (h) {
if (h->loop_fd != -1)
close(h->loop_fd);
free(h->device);
free(h->backing_file);
}
free(h);
return r;
}
static int crypt_check_data_device_size(struct crypt_device *cd)
{
int r;
uint64_t size, size_min;
/* Check data device size, require at least one sector */
size_min = crypt_get_data_offset(cd) ?: SECTOR_SIZE;
r = device_size(crypt_get_device_name(cd), &size);
if (r < 0)
return r;
if (size < size_min) {
log_err(cd, _("LUKS header detected but device %s is too small.\n"),
crypt_get_device_name(cd));
return -EINVAL;
}
return r;
}
int crypt_set_data_device(struct crypt_device *cd, const char *device)
{
char *data_device;
int r;
log_dbg("Setting ciphertext data device to %s.", device ?: "(none)");
if (!isLUKS(cd->type)) {
log_err(cd, _("This operation is not supported for this device type.\n"));
return -EINVAL;
}
/* metadata device must be set */
if (!cd->device)
return -EINVAL;
r = device_ready(NULL, device, O_RDONLY);
if (r < 0)
return r;
if (!(data_device = strdup(device)))
return -ENOMEM;
if (!cd->metadata_device)
cd->metadata_device = cd->device;
else
free(cd->device);
cd->device = data_device;
return crypt_check_data_device_size(cd);
}
int crypt_init_by_name_and_header(struct crypt_device **cd,
const char *name,
const char *header_device)
{
crypt_status_info ci;
struct crypt_dm_active_device dmd;
char cipher[MAX_CIPHER_LEN], cipher_mode[MAX_CIPHER_LEN];
int key_nums, r;
log_dbg("Allocating crypt device context by device %s.", name);
ci = crypt_status(NULL, name);
if (ci == CRYPT_INVALID)
return -ENODEV;
if (ci < CRYPT_ACTIVE) {
log_err(NULL, _("Device %s is not active.\n"), name);
return -ENODEV;
}
r = dm_query_device(name, DM_ACTIVE_DEVICE | DM_ACTIVE_CIPHER |
DM_ACTIVE_UUID | DM_ACTIVE_KEYSIZE, &dmd);
if (r < 0)
goto out;
*cd = NULL;
if (header_device) {
r = crypt_init(cd, header_device);
} else {
r = crypt_init(cd, dmd.device);
/* Underlying device disappeared but mapping still active */
if (!dmd.device || r == -ENOTBLK)
log_verbose(NULL, _("Underlying device for crypt device %s disappeared.\n"),
name);
/* Underlying device is not readable but crypt mapping exists */
if (r == -ENOTBLK) {
free(CONST_CAST(void*)dmd.device);
dmd.device = NULL;
r = crypt_init(cd, NULL);
}
}
if (r < 0)
goto out;
if (dmd.uuid) {
if (!strncmp(CRYPT_PLAIN, dmd.uuid, sizeof(CRYPT_PLAIN)-1))
(*cd)->type = strdup(CRYPT_PLAIN);
else if (!strncmp(CRYPT_LOOPAES, dmd.uuid, sizeof(CRYPT_LOOPAES)-1))
(*cd)->type = strdup(CRYPT_LOOPAES);
else if (!strncmp(CRYPT_LUKS1, dmd.uuid, sizeof(CRYPT_LUKS1)-1))
(*cd)->type = strdup(CRYPT_LUKS1);
else
log_dbg("Unknown UUID set, some parameters are not set.");
} else
log_dbg("Active device has no UUID set, some parameters are not set.");
if (header_device) {
r = crypt_set_data_device(*cd, dmd.device);
if (r < 0)
goto out;
}
/* Try to initialise basic parameters from active device */
if (!(*cd)->backing_file && dmd.device && crypt_loop_device(dmd.device) &&
!((*cd)->backing_file = crypt_loop_backing_file(dmd.device))) {
r = -ENOMEM;
goto out;
}
if (isPLAIN((*cd)->type)) {
(*cd)->type = strdup(CRYPT_PLAIN);
(*cd)->plain_uuid = strdup(dmd.uuid);
(*cd)->plain_hdr.hash = NULL; /* no way to get this */
(*cd)->plain_hdr.offset = dmd.offset;
(*cd)->plain_hdr.skip = dmd.iv_offset;
r = crypt_parse_name_and_mode(dmd.cipher, cipher, NULL, cipher_mode);
if (!r) {
(*cd)->plain_cipher = strdup(cipher);
(*cd)->plain_cipher_mode = strdup(cipher_mode);
}
} else if (isLOOPAES((*cd)->type)) {
(*cd)->type = strdup(CRYPT_LOOPAES);
(*cd)->loopaes_uuid = strdup(dmd.uuid);
(*cd)->loopaes_hdr.offset = dmd.offset;
r = crypt_parse_name_and_mode(dmd.cipher, cipher,
&key_nums, cipher_mode);
if (!r) {
(*cd)->loopaes_cipher = strdup(cipher);
(*cd)->loopaes_cipher_mode = strdup(cipher_mode);
/* version 3 uses last key for IV */
if (dmd.vk->keylength % key_nums)
key_nums++;
(*cd)->loopaes_key_size = dmd.vk->keylength / key_nums;
}
} else if (isLUKS((*cd)->type)) {
if (mdata_device(*cd)) {
r = crypt_load(*cd, CRYPT_LUKS1, NULL);
if (r < 0) {
log_dbg("LUKS device header does not match active device.");
free((*cd)->type);
(*cd)->type = NULL;
r = 0;
goto out;
}
/* checks whether UUIDs match each other */
r = crypt_uuid_cmp(dmd.uuid, (*cd)->hdr.uuid);
if (r < 0) {
log_dbg("LUKS device header uuid: %s mismatches DM returned uuid %s",
(*cd)->hdr.uuid, dmd.uuid);
free((*cd)->type);
(*cd)->type = NULL;
r = 0;
goto out;
}
}
}
out:
if (r < 0) {
crypt_free(*cd);
*cd = NULL;
}
crypt_free_volume_key(dmd.vk);
free(CONST_CAST(void*)dmd.device);
free(CONST_CAST(void*)dmd.cipher);
free(CONST_CAST(void*)dmd.uuid);
return r;
}
int crypt_init_by_name(struct crypt_device **cd, const char *name)
{
return crypt_init_by_name_and_header(cd, name, NULL);
}
static int _crypt_format_plain(struct crypt_device *cd,
const char *cipher,
const char *cipher_mode,
const char *uuid,
size_t volume_key_size,
struct crypt_params_plain *params)
{
if (!cipher || !cipher_mode) {
log_err(cd, _("Invalid plain crypt parameters.\n"));
return -EINVAL;
}
if (volume_key_size > 1024) {
log_err(cd, _("Invalid key size.\n"));
return -EINVAL;
}
cd->volume_key = crypt_alloc_volume_key(volume_key_size, NULL);
if (!cd->volume_key)
return -ENOMEM;
cd->plain_cipher = strdup(cipher);
cd->plain_cipher_mode = strdup(cipher_mode);
if (uuid)
cd->plain_uuid = strdup(uuid);
if (params && params->hash)
cd->plain_hdr.hash = strdup(params->hash);
cd->plain_hdr.offset = params ? params->offset : 0;
cd->plain_hdr.skip = params ? params->skip : 0;
cd->plain_hdr.size = params ? params->size : 0;
if (!cd->plain_cipher || !cd->plain_cipher_mode)
return -ENOMEM;
return 0;
}
static int _crypt_format_luks1(struct crypt_device *cd,
const char *cipher,
const char *cipher_mode,
const char *uuid,
const char *volume_key,
size_t volume_key_size,
struct crypt_params_luks1 *params)
{
int r;
unsigned long required_alignment = DEFAULT_DISK_ALIGNMENT;
unsigned long alignment_offset = 0;
if (!mdata_device(cd)) {
log_err(cd, _("Can't format LUKS without device.\n"));
return -EINVAL;
}
if (volume_key)
cd->volume_key = crypt_alloc_volume_key(volume_key_size,
volume_key);
else
cd->volume_key = crypt_generate_volume_key(cd, volume_key_size);
if(!cd->volume_key)
return -ENOMEM;
if (params && params->data_device) {
cd->metadata_device = cd->device;
if (!(cd->device = strdup(params->data_device)))
return -ENOMEM;
required_alignment = params->data_alignment * SECTOR_SIZE;
} else if (params && params->data_alignment) {
required_alignment = params->data_alignment * SECTOR_SIZE;
} else
get_topology_alignment(cd->device, &required_alignment,
&alignment_offset, DEFAULT_DISK_ALIGNMENT);
r = LUKS_generate_phdr(&cd->hdr, cd->volume_key, cipher, cipher_mode,
(params && params->hash) ? params->hash : "sha1",
uuid, LUKS_STRIPES,
required_alignment / SECTOR_SIZE,
alignment_offset / SECTOR_SIZE,
cd->iteration_time, &cd->PBKDF2_per_sec,
cd->metadata_device, cd);
if(r < 0)
return r;
/* Wipe first 8 sectors - fs magic numbers etc. */
r = wipe_device_header(mdata_device(cd), 8);
if(r < 0) {
if (r == -EBUSY)
log_err(cd, _("Cannot format device %s which is still in use.\n"),
mdata_device(cd));
else
log_err(cd, _("Cannot wipe header on device %s.\n"),
mdata_device(cd));
return r;
}
r = LUKS_write_phdr(mdata_device(cd), &cd->hdr, cd);
return r;
}
static int _crypt_format_loopaes(struct crypt_device *cd,
const char *cipher,
const char *uuid,
size_t volume_key_size,
struct crypt_params_loopaes *params)
{
if (!mdata_device(cd)) {
log_err(cd, _("Can't format LOOPAES without device.\n"));
return -EINVAL;
}
if (volume_key_size > 1024) {
log_err(cd, _("Invalid key size.\n"));
return -EINVAL;
}
cd->loopaes_key_size = volume_key_size;
cd->loopaes_cipher = strdup(cipher ?: DEFAULT_LOOPAES_CIPHER);
if (uuid)
cd->loopaes_uuid = strdup(uuid);
if (params && params->hash)
cd->loopaes_hdr.hash = strdup(params->hash);
cd->loopaes_hdr.offset = params ? params->offset : 0;
cd->loopaes_hdr.skip = params ? params->skip : 0;
return 0;
}
int crypt_format(struct crypt_device *cd,
const char *type,
const char *cipher,
const char *cipher_mode,
const char *uuid,
const char *volume_key,
size_t volume_key_size,
void *params)
{
int r;
if (!type)
return -EINVAL;
log_dbg("Formatting device %s as type %s.", mdata_device(cd) ?: "(none)", type);
r = init_crypto(cd);
if (r < 0)
return r;
if (isPLAIN(type))
r = _crypt_format_plain(cd, cipher, cipher_mode,
uuid, volume_key_size, params);
else if (isLUKS(type))
r = _crypt_format_luks1(cd, cipher, cipher_mode,
uuid, volume_key, volume_key_size, params);
else if (isLOOPAES(type))
r = _crypt_format_loopaes(cd, cipher, uuid, volume_key_size, params);
else {
/* FIXME: allow plugins here? */
log_err(cd, _("Unknown crypt device type %s requested.\n"), type);
r = -EINVAL;
}
if (!r && !(cd->type = strdup(type)))
r = -ENOMEM;
if (r < 0) {
crypt_free_volume_key(cd->volume_key);
cd->volume_key = NULL;
}
return r;
}
int crypt_load(struct crypt_device *cd,
const char *requested_type,
void *params __attribute__((unused)))
{
struct luks_phdr hdr;
int r;
log_dbg("Trying to load %s crypt type from device %s.",
requested_type ?: "any", mdata_device(cd) ?: "(none)");
if (!mdata_device(cd))
return -EINVAL;
if (requested_type && !isLUKS(requested_type))
return -EINVAL;
if (cd->type && !isLUKS(cd->type)) {
log_dbg("Context is already initialised to type %s", cd->type);
return -EINVAL;
}
r = init_crypto(cd);
if (r < 0)
return r;
r = LUKS_read_phdr(mdata_device(cd), &hdr, 1, cd);
if (r < 0)
return r;
if (!cd->type && !(cd->type = strdup(CRYPT_LUKS1)))
return -ENOMEM;
memcpy(&cd->hdr, &hdr, sizeof(hdr));
/* cd->type and header must be set in context */
r = crypt_check_data_device_size(cd);
if (r < 0) {
free(cd->type);
cd->type = NULL;
}
return r;
}
int crypt_resize(struct crypt_device *cd, const char *name, uint64_t new_size)
{
struct crypt_dm_active_device dmd;
int r;
/* Device context type must be initialised */
if (!cd->type || !crypt_get_uuid(cd))
return -EINVAL;
log_dbg("Resizing device %s to %" PRIu64 " sectors.", name, new_size);
r = dm_query_device(name, DM_ACTIVE_DEVICE | DM_ACTIVE_CIPHER |
DM_ACTIVE_UUID | DM_ACTIVE_KEYSIZE |
DM_ACTIVE_KEY, &dmd);
if (r < 0) {
log_err(NULL, _("Device %s is not active.\n"), name);
goto out;
}
if (!dmd.uuid) {
r = -EINVAL;
goto out;
}
r = device_check_and_adjust(cd, dmd.device, DEV_OK, &new_size, &dmd.offset, &dmd.flags);
if (r)
goto out;
if (new_size == dmd.size) {
log_dbg("Device has already requested size %" PRIu64
" sectors.", dmd.size);
r = 0;
} else {
dmd.size = new_size;
r = dm_create_device(name, cd->type, &dmd, 1);
}
out:
crypt_free_volume_key(dmd.vk);
free(CONST_CAST(void*)dmd.cipher);
free(CONST_CAST(void*)dmd.device);
free(CONST_CAST(void*)dmd.uuid);
return r;
}
int crypt_set_uuid(struct crypt_device *cd, const char *uuid)
{
if (!isLUKS(cd->type)) {
log_err(cd, _("This operation is not supported for this device type.\n"));
return -EINVAL;
}
if (uuid && !strncmp(uuid, cd->hdr.uuid, sizeof(cd->hdr.uuid))) {
log_dbg("UUID is the same as requested (%s) for device %s.",
uuid, mdata_device(cd));
return 0;
}
if (uuid)
log_dbg("Requested new UUID change to %s for %s.", uuid, mdata_device(cd));
else
log_dbg("Requested new UUID refresh for %s.", mdata_device(cd));
if (!crypt_confirm(cd, _("Do you really want to change UUID of device?")))
return -EPERM;
return LUKS_hdr_uuid_set(mdata_device(cd), &cd->hdr, uuid, cd);
}
int crypt_header_backup(struct crypt_device *cd,
const char *requested_type,
const char *backup_file)
{
int r;
if ((requested_type && !isLUKS(requested_type)) || !backup_file)
return -EINVAL;
r = init_crypto(cd);
if (r < 0)
return r;
log_dbg("Requested header backup of device %s (%s) to "
"file %s.", mdata_device(cd), requested_type, backup_file);
return LUKS_hdr_backup(backup_file, mdata_device(cd), &cd->hdr, cd);
}
int crypt_header_restore(struct crypt_device *cd,
const char *requested_type,
const char *backup_file)
{
int r;
if (requested_type && !isLUKS(requested_type))
return -EINVAL;
/* Some hash functions need initialized gcrypt library */
r = init_crypto(cd);
if (r < 0)
return r;
log_dbg("Requested header restore to device %s (%s) from "
"file %s.", mdata_device(cd), requested_type, backup_file);
return LUKS_hdr_restore(backup_file, mdata_device(cd), &cd->hdr, cd);
}
void crypt_free(struct crypt_device *cd)
{
if (cd) {
log_dbg("Releasing crypt device %s context.", mdata_device(cd));
if (cd->loop_fd != -1)
close(cd->loop_fd);
dm_exit();
crypt_free_volume_key(cd->volume_key);
free(cd->device);
free(cd->metadata_device);
free(cd->backing_file);
free(cd->type);
/* used in plain device only */
free(CONST_CAST(void*)cd->plain_hdr.hash);
free(cd->plain_cipher);
free(cd->plain_cipher_mode);
free(cd->plain_uuid);
/* used in loop-AES device only */
free(CONST_CAST(void*)cd->loopaes_hdr.hash);
free(cd->loopaes_cipher);
free(cd->loopaes_uuid);
free(cd);
}
}
int crypt_suspend(struct crypt_device *cd,
const char *name)
{
crypt_status_info ci;
int r;
log_dbg("Suspending volume %s.", name);
if (!isLUKS(cd->type)) {
log_err(cd, _("This operation is supported only for LUKS device.\n"));
r = -EINVAL;
goto out;
}
ci = crypt_status(NULL, name);
if (ci < CRYPT_ACTIVE) {
log_err(cd, _("Volume %s is not active.\n"), name);
return -EINVAL;
}
if (!cd && dm_init(NULL, 1) < 0)
return -ENOSYS;
r = dm_status_suspended(name);
if (r < 0)
goto out;
if (r) {
log_err(cd, _("Volume %s is already suspended.\n"), name);
r = -EINVAL;
goto out;
}
r = dm_suspend_and_wipe_key(name);
if (r == -ENOTSUP)
log_err(cd, "Suspend is not supported for device %s.\n", name);
else if (r)
log_err(cd, "Error during suspending device %s.\n", name);
out:
if (!cd)
dm_exit();
return r;
}
int crypt_resume_by_passphrase(struct crypt_device *cd,
const char *name,
int keyslot,
const char *passphrase,
size_t passphrase_size)
{
struct volume_key *vk = NULL;
int r;
log_dbg("Resuming volume %s.", name);
if (!isLUKS(cd->type)) {
log_err(cd, _("This operation is supported only for LUKS device.\n"));
r = -EINVAL;
goto out;
}
r = dm_status_suspended(name);
if (r < 0)
return r;
if (!r) {
log_err(cd, _("Volume %s is not suspended.\n"), name);
return -EINVAL;
}
if (passphrase) {
r = LUKS_open_key_with_hdr(mdata_device(cd), keyslot, passphrase,
passphrase_size, &cd->hdr, &vk, cd);
} else
r = volume_key_by_terminal_passphrase(cd, keyslot, &vk);
if (r >= 0) {
keyslot = r;
r = dm_resume_and_reinstate_key(name, vk->keylength, vk->key);
if (r == -ENOTSUP)
log_err(cd, "Resume is not supported for device %s.\n", name);
else if (r)
log_err(cd, "Error during resuming device %s.\n", name);
} else
r = keyslot;
out:
crypt_free_volume_key(vk);
return r < 0 ? r : keyslot;
}
int crypt_resume_by_keyfile(struct crypt_device *cd,
const char *name,
int keyslot,
const char *keyfile,
size_t keyfile_size)
{
struct volume_key *vk = NULL;
char *passphrase_read = NULL;
size_t passphrase_size_read;
int r;
log_dbg("Resuming volume %s.", name);
if (!isLUKS(cd->type)) {
log_err(cd, _("This operation is supported only for LUKS device.\n"));
r = -EINVAL;
goto out;
}
r = dm_status_suspended(name);
if (r < 0)
return r;
if (!r) {
log_err(cd, _("Volume %s is not suspended.\n"), name);
return -EINVAL;
}
if (!keyfile)
return -EINVAL;
r = key_from_file(cd, _("Enter passphrase: "), &passphrase_read,
&passphrase_size_read, keyfile, keyfile_size);
if (r < 0)
goto out;
r = LUKS_open_key_with_hdr(mdata_device(cd), keyslot, passphrase_read,
passphrase_size_read, &cd->hdr, &vk, cd);
if (r < 0)
goto out;
keyslot = r;
r = dm_resume_and_reinstate_key(name, vk->keylength, vk->key);
if (r)
log_err(cd, "Error during resuming device %s.\n", name);
out:
crypt_safe_free(passphrase_read);
crypt_free_volume_key(vk);
return r < 0 ? r : keyslot;
}
// slot manipulation
int crypt_keyslot_add_by_passphrase(struct crypt_device *cd,
int keyslot, // -1 any
const char *passphrase, // NULL -> terminal
size_t passphrase_size,
const char *new_passphrase, // NULL -> terminal
size_t new_passphrase_size)
{
struct volume_key *vk = NULL;
char *password = NULL, *new_password = NULL;
size_t passwordLen, new_passwordLen;
int r;
log_dbg("Adding new keyslot, existing passphrase %sprovided,"
"new passphrase %sprovided.",
passphrase ? "" : "not ", new_passphrase ? "" : "not ");
if (!isLUKS(cd->type)) {
log_err(cd, _("This operation is supported only for LUKS device.\n"));
return -EINVAL;
}
r = keyslot_verify_or_find_empty(cd, &keyslot);
if (r)
return r;
if (!LUKS_keyslot_active_count(&cd->hdr)) {
/* No slots used, try to use pre-generated key in header */
if (cd->volume_key) {
vk = crypt_alloc_volume_key(cd->volume_key->keylength, cd->volume_key->key);
r = vk ? 0 : -ENOMEM;
} else {
log_err(cd, _("Cannot add key slot, all slots disabled and no volume key provided.\n"));
return -EINVAL;
}
} else if (passphrase) {
/* Passphrase provided, use it to unlock existing keyslot */
r = LUKS_open_key_with_hdr(mdata_device(cd), CRYPT_ANY_SLOT, passphrase,
passphrase_size, &cd->hdr, &vk, cd);
} else {
/* Passphrase not provided, ask first and use it to unlock existing keyslot */
r = key_from_terminal(cd, _("Enter any passphrase: "),
&password, &passwordLen, 0);
if (r < 0)
goto out;
r = LUKS_open_key_with_hdr(mdata_device(cd), CRYPT_ANY_SLOT, password,
passwordLen, &cd->hdr, &vk, cd);
crypt_safe_free(password);
}
if(r < 0)
goto out;
if (new_passphrase) {
new_password = CONST_CAST(char*)new_passphrase;
new_passwordLen = new_passphrase_size;
} else {
r = key_from_terminal(cd, _("Enter new passphrase for key slot: "),
&new_password, &new_passwordLen, 1);
if(r < 0)
goto out;
}
r = LUKS_set_key(mdata_device(cd), keyslot, new_password, new_passwordLen,
&cd->hdr, vk, cd->iteration_time, &cd->PBKDF2_per_sec, cd);
if(r < 0) goto out;
r = 0;
out:
if (!new_passphrase)
crypt_safe_free(new_password);
crypt_free_volume_key(vk);
return r ?: keyslot;
}
int crypt_keyslot_add_by_keyfile(struct crypt_device *cd,
int keyslot,
const char *keyfile,
size_t keyfile_size,
const char *new_keyfile,
size_t new_keyfile_size)
{
struct volume_key *vk = NULL;
char *password = NULL; size_t passwordLen;
char *new_password = NULL; size_t new_passwordLen;
int r;
log_dbg("Adding new keyslot, existing keyfile %s, new keyfile %s.",
keyfile ?: "[none]", new_keyfile ?: "[none]");
if (!isLUKS(cd->type)) {
log_err(cd, _("This operation is supported only for LUKS device.\n"));
return -EINVAL;
}
r = keyslot_verify_or_find_empty(cd, &keyslot);
if (r)
return r;
if (!LUKS_keyslot_active_count(&cd->hdr)) {
/* No slots used, try to use pre-generated key in header */
if (cd->volume_key) {
vk = crypt_alloc_volume_key(cd->volume_key->keylength, cd->volume_key->key);
r = vk ? 0 : -ENOMEM;
} else {
log_err(cd, _("Cannot add key slot, all slots disabled and no volume key provided.\n"));
return -EINVAL;
}
} else {
/* Read password from file of (if NULL) from terminal */
if (keyfile)
r = key_from_file(cd, _("Enter any passphrase: "),
&password, &passwordLen,
keyfile, keyfile_size);
else
r = key_from_terminal(cd, _("Enter any passphrase: "),
&password, &passwordLen, 0);
if (r < 0)
goto out;
r = LUKS_open_key_with_hdr(mdata_device(cd), CRYPT_ANY_SLOT, password, passwordLen,
&cd->hdr, &vk, cd);
}
if(r < 0)
goto out;
if (new_keyfile)
r = key_from_file(cd, _("Enter new passphrase for key slot: "),
&new_password, &new_passwordLen, new_keyfile,
new_keyfile_size);
else
r = key_from_terminal(cd, _("Enter new passphrase for key slot: "),
&new_password, &new_passwordLen, 1);
if (r < 0)
goto out;
r = LUKS_set_key(mdata_device(cd), keyslot, new_password, new_passwordLen,
&cd->hdr, vk, cd->iteration_time, &cd->PBKDF2_per_sec, cd);
out:
crypt_safe_free(password);
crypt_safe_free(new_password);
crypt_free_volume_key(vk);
return r < 0 ? r : keyslot;
}
int crypt_keyslot_add_by_volume_key(struct crypt_device *cd,
int keyslot,
const char *volume_key,
size_t volume_key_size,
const char *passphrase,
size_t passphrase_size)
{
struct volume_key *vk = NULL;
int r = -EINVAL;
char *new_password = NULL; size_t new_passwordLen;
log_dbg("Adding new keyslot %d using volume key.", keyslot);
if (!isLUKS(cd->type)) {
log_err(cd, _("This operation is supported only for LUKS device.\n"));
return -EINVAL;
}
if (volume_key)
vk = crypt_alloc_volume_key(volume_key_size, volume_key);
else if (cd->volume_key)
vk = crypt_alloc_volume_key(cd->volume_key->keylength, cd->volume_key->key);
if (!vk)
return -ENOMEM;
r = LUKS_verify_volume_key(&cd->hdr, vk);
if (r < 0) {
log_err(cd, _("Volume key does not match the volume.\n"));
goto out;
}
r = keyslot_verify_or_find_empty(cd, &keyslot);
if (r)
goto out;
if (!passphrase) {
r = key_from_terminal(cd, _("Enter new passphrase for key slot: "),
&new_password, &new_passwordLen, 1);
if (r < 0)
goto out;
passphrase = new_password;
passphrase_size = new_passwordLen;
}
r = LUKS_set_key(mdata_device(cd), keyslot, passphrase, passphrase_size,
&cd->hdr, vk, cd->iteration_time, &cd->PBKDF2_per_sec, cd);
out:
crypt_safe_free(new_password);
crypt_free_volume_key(vk);
return (r < 0) ? r : keyslot;
}
int crypt_keyslot_destroy(struct crypt_device *cd, int keyslot)
{
crypt_keyslot_info ki;
log_dbg("Destroying keyslot %d.", keyslot);
if (!isLUKS(cd->type)) {
log_err(cd, _("This operation is supported only for LUKS device.\n"));
return -EINVAL;
}
ki = crypt_keyslot_status(cd, keyslot);
if (ki == CRYPT_SLOT_INVALID) {
log_err(cd, _("Key slot %d is invalid.\n"), keyslot);
return -EINVAL;
}
if (ki == CRYPT_SLOT_INACTIVE) {
log_err(cd, _("Key slot %d is not used.\n"), keyslot);
return -EINVAL;
}
return LUKS_del_key(mdata_device(cd), keyslot, &cd->hdr, cd);
}
// activation/deactivation of device mapping
int crypt_activate_by_passphrase(struct crypt_device *cd,
const char *name,
int keyslot,
const char *passphrase,
size_t passphrase_size,
uint32_t flags)
{
crypt_status_info ci;
struct volume_key *vk = NULL;
char *read_passphrase = NULL;
size_t passphraseLen = 0;
int r;
log_dbg("%s volume %s [keyslot %d] using %spassphrase.",
name ? "Activating" : "Checking", name ?: "",
keyslot, passphrase ? "" : "[none] ");
if (name) {
ci = crypt_status(NULL, name);
if (ci == CRYPT_INVALID)
return -EINVAL;
else if (ci >= CRYPT_ACTIVE) {
log_err(cd, _("Device %s already exists.\n"), name);
return -EEXIST;
}
}
/* plain, use hashed passphrase */
if (isPLAIN(cd->type)) {
if (!name)
return -EINVAL;
if (!passphrase) {
r = key_from_terminal(cd, NULL, &read_passphrase,
&passphraseLen, 0);
if (r < 0)
goto out;
passphrase = read_passphrase;
passphrase_size = passphraseLen;
}
r = process_key(cd, cd->plain_hdr.hash,
cd->volume_key->keylength,
passphrase, passphrase_size, &vk);
if (r < 0)
goto out;
r = PLAIN_activate(cd, name, vk, cd->plain_hdr.size, flags);
keyslot = 0;
} else if (isLUKS(cd->type)) {
/* provided passphrase, do not retry */
if (passphrase) {
r = LUKS_open_key_with_hdr(mdata_device(cd), keyslot, passphrase,
passphrase_size, &cd->hdr, &vk, cd);
} else
r = volume_key_by_terminal_passphrase(cd, keyslot, &vk);
if (r >= 0) {
keyslot = r;
if (name)
r = LUKS1_activate(cd, name, vk, flags);
}
} else
r = -EINVAL;
out:
crypt_safe_free(read_passphrase);
crypt_free_volume_key(vk);
return r < 0 ? r : keyslot;
}
int crypt_activate_by_keyfile(struct crypt_device *cd,
const char *name,
int keyslot,
const char *keyfile,
size_t keyfile_size,
uint32_t flags)
{
crypt_status_info ci;
struct volume_key *vk = NULL;
char *passphrase_read = NULL;
size_t passphrase_size_read;
unsigned int key_count = 0;
int r;
log_dbg("Activating volume %s [keyslot %d] using keyfile %s.",
name ?: "", keyslot, keyfile ?: "[none]");
if (name) {
ci = crypt_status(NULL, name);
if (ci == CRYPT_INVALID)
return -EINVAL;
else if (ci >= CRYPT_ACTIVE) {
log_err(cd, _("Device %s already exists.\n"), name);
return -EEXIST;
}
}
if (!keyfile)
return -EINVAL;
if (isPLAIN(cd->type)) {
if (!name)
return -EINVAL;
r = key_from_file(cd, _("Enter passphrase: "),
&passphrase_read, &passphrase_size_read,
keyfile, keyfile_size);
if (r < 0)
goto out;
r = process_key(cd, cd->plain_hdr.hash,
cd->volume_key->keylength,
passphrase_read, passphrase_size_read, &vk);
if (r < 0)
goto out;
r = PLAIN_activate(cd, name, vk, cd->plain_hdr.size, flags);
} else if (isLUKS(cd->type)) {
r = key_from_file(cd, _("Enter passphrase: "), &passphrase_read,
&passphrase_size_read, keyfile, keyfile_size);
if (r < 0)
goto out;
r = LUKS_open_key_with_hdr(mdata_device(cd), keyslot, passphrase_read,
passphrase_size_read, &cd->hdr, &vk, cd);
if (r < 0)
goto out;
keyslot = r;
if (name) {
r = LUKS1_activate(cd, name, vk, flags);
if (r < 0)
goto out;
}
r = keyslot;
} else if (isLOOPAES(cd->type)) {
r = key_from_file(cd, NULL, &passphrase_read, &passphrase_size_read,
keyfile, keyfile_size);
if (r < 0)
goto out;
r = LOOPAES_parse_keyfile(cd, &vk, cd->loopaes_hdr.hash, &key_count,
passphrase_read, passphrase_size_read);
if (r < 0)
goto out;
if (name)
r = LOOPAES_activate(cd, name, cd->loopaes_cipher,
key_count, vk, flags);
} else
r = -EINVAL;
out:
crypt_safe_free(passphrase_read);
crypt_free_volume_key(vk);
return r;
}
int crypt_activate_by_volume_key(struct crypt_device *cd,
const char *name,
const char *volume_key,
size_t volume_key_size,
uint32_t flags)
{
crypt_status_info ci;
struct volume_key *vk = NULL;
int r = -EINVAL;
log_dbg("Activating volume %s by volume key.", name);
if (name) {
ci = crypt_status(NULL, name);
if (ci == CRYPT_INVALID)
return -EINVAL;
else if (ci >= CRYPT_ACTIVE) {
log_err(cd, _("Device %s already exists.\n"), name);
return -EEXIST;
}
}
/* use key directly, no hash */
if (isPLAIN(cd->type)) {
if (!name)
return -EINVAL;
if (!volume_key || !volume_key_size || !cd->volume_key ||
volume_key_size != cd->volume_key->keylength) {
log_err(cd, _("Incorrect volume key specified for plain device.\n"));
return -EINVAL;
}
vk = crypt_alloc_volume_key(volume_key_size, volume_key);
if (!vk)
return -ENOMEM;
r = PLAIN_activate(cd, name, vk, cd->plain_hdr.size, flags);
} else if (isLUKS(cd->type)) {
/* If key is not provided, try to use internal key */
if (!volume_key) {
if (!cd->volume_key) {
log_err(cd, _("Volume key does not match the volume.\n"));
return -EINVAL;
}
volume_key_size = cd->volume_key->keylength;
volume_key = cd->volume_key->key;
}
vk = crypt_alloc_volume_key(volume_key_size, volume_key);
if (!vk)
return -ENOMEM;
r = LUKS_verify_volume_key(&cd->hdr, vk);
if (r == -EPERM)
log_err(cd, _("Volume key does not match the volume.\n"));
if (!r && name)
r = LUKS1_activate(cd, name, vk, flags);
} else
log_err(cd, _("Device type is not properly initialised.\n"));
crypt_free_volume_key(vk);
return r;
}
int crypt_deactivate(struct crypt_device *cd, const char *name)
{
int r;
if (!name)
return -EINVAL;
log_dbg("Deactivating volume %s.", name);
if (!cd && dm_init(NULL, 1) < 0)
return -ENOSYS;
switch (crypt_status(cd, name)) {
case CRYPT_ACTIVE:
r = dm_remove_device(name, 0, 0);
break;
case CRYPT_BUSY:
log_err(cd, _("Device %s is busy.\n"), name);
r = -EBUSY;
break;
case CRYPT_INACTIVE:
log_err(cd, _("Device %s is not active.\n"), name);
r = -ENODEV;
break;
default:
log_err(cd, _("Invalid device %s.\n"), name);
r = -EINVAL;
}
if (!cd)
dm_exit();
return r;
}
int crypt_volume_key_get(struct crypt_device *cd,
int keyslot,
char *volume_key,
size_t *volume_key_size,
const char *passphrase,
size_t passphrase_size)
{
struct volume_key *vk = NULL;
unsigned key_len;
int r = -EINVAL;
key_len = crypt_get_volume_key_size(cd);
if (key_len > *volume_key_size) {
log_err(cd, _("Volume key buffer too small.\n"));
return -ENOMEM;
}
if (isPLAIN(cd->type) && cd->plain_hdr.hash) {
r = process_key(cd, cd->plain_hdr.hash, key_len,
passphrase, passphrase_size, &vk);
if (r < 0)
log_err(cd, _("Cannot retrieve volume key for plain device.\n"));
} else if (isLUKS(cd->type)) {
r = LUKS_open_key_with_hdr(mdata_device(cd), keyslot, passphrase,
passphrase_size, &cd->hdr, &vk, cd);
} else
log_err(cd, _("This operation is not supported for %s crypt device.\n"), cd->type ?: "(none)");
if (r >= 0) {
memcpy(volume_key, vk->key, vk->keylength);
*volume_key_size = vk->keylength;
}
crypt_free_volume_key(vk);
return r;
}
int crypt_volume_key_verify(struct crypt_device *cd,
const char *volume_key,
size_t volume_key_size)
{
struct volume_key *vk;
int r;
if (!isLUKS(cd->type)) {
log_err(cd, _("This operation is supported only for LUKS device.\n"));
return -EINVAL;
}
vk = crypt_alloc_volume_key(volume_key_size, volume_key);
if (!vk)
return -ENOMEM;
r = LUKS_verify_volume_key(&cd->hdr, vk);
if (r == -EPERM)
log_err(cd, _("Volume key does not match the volume.\n"));
crypt_free_volume_key(vk);
return r;
}
void crypt_set_timeout(struct crypt_device *cd, uint64_t timeout_sec)
{
log_dbg("Timeout set to %" PRIu64 " miliseconds.", timeout_sec);
cd->timeout = timeout_sec;
}
void crypt_set_password_retry(struct crypt_device *cd, int tries)
{
log_dbg("Password retry count set to %d.", tries);
cd->tries = tries;
}
void crypt_set_iterarion_time(struct crypt_device *cd, uint64_t iteration_time_ms)
{
log_dbg("Iteration time set to %" PRIu64 " miliseconds.", iteration_time_ms);
cd->iteration_time = iteration_time_ms;
}
void crypt_set_password_verify(struct crypt_device *cd, int password_verify)
{
log_dbg("Password verification %s.", password_verify ? "enabled" : "disabled");
cd->password_verify = password_verify ? 1 : 0;
}
void crypt_set_rng_type(struct crypt_device *cd, int rng_type)
{
switch (rng_type) {
case CRYPT_RNG_URANDOM:
case CRYPT_RNG_RANDOM:
log_dbg("RNG set to %d (%s).", rng_type, rng_type ? "random" : "urandom");
cd->rng_type = rng_type;
}
}
int crypt_get_rng_type(struct crypt_device *cd)
{
if (!cd)
return -EINVAL;
return cd->rng_type;
}
int crypt_memory_lock(struct crypt_device *cd, int lock)
{
return lock ? crypt_memlock_inc(cd) : crypt_memlock_dec(cd);
}
// reporting
crypt_status_info crypt_status(struct crypt_device *cd, const char *name)
{
int r;
if (!cd && dm_init(NULL, 1) < 0)
return CRYPT_INVALID;
r = dm_status_device(name);
if (!cd)
dm_exit();
if (r < 0 && r != -ENODEV)
return CRYPT_INVALID;
if (r == 0)
return CRYPT_ACTIVE;
if (r > 0)
return CRYPT_BUSY;
return CRYPT_INACTIVE;
}
static void hexprintICB(struct crypt_device *cd, char *d, int n)
{
int i;
for(i = 0; i < n; i++)
log_std(cd, "%02hhx ", (char)d[i]);
}
int crypt_dump(struct crypt_device *cd)
{
int i;
if (!isLUKS(cd->type)) { //FIXME
log_err(cd, _("This operation is supported only for LUKS device.\n"));
return -EINVAL;
}
log_std(cd, "LUKS header information for %s\n\n", mdata_device(cd));
log_std(cd, "Version: \t%d\n", cd->hdr.version);
log_std(cd, "Cipher name: \t%s\n", cd->hdr.cipherName);
log_std(cd, "Cipher mode: \t%s\n", cd->hdr.cipherMode);
log_std(cd, "Hash spec: \t%s\n", cd->hdr.hashSpec);
log_std(cd, "Payload offset:\t%d\n", cd->hdr.payloadOffset);
log_std(cd, "MK bits: \t%d\n", cd->hdr.keyBytes * 8);
log_std(cd, "MK digest: \t");
hexprintICB(cd, cd->hdr.mkDigest, LUKS_DIGESTSIZE);
log_std(cd, "\n");
log_std(cd, "MK salt: \t");
hexprintICB(cd, cd->hdr.mkDigestSalt, LUKS_SALTSIZE/2);
log_std(cd, "\n \t");
hexprintICB(cd, cd->hdr.mkDigestSalt+LUKS_SALTSIZE/2, LUKS_SALTSIZE/2);
log_std(cd, "\n");
log_std(cd, "MK iterations: \t%d\n", cd->hdr.mkDigestIterations);
log_std(cd, "UUID: \t%s\n\n", cd->hdr.uuid);
for(i = 0; i < LUKS_NUMKEYS; i++) {
if(cd->hdr.keyblock[i].active == LUKS_KEY_ENABLED) {
log_std(cd, "Key Slot %d: ENABLED\n",i);
log_std(cd, "\tIterations: \t%d\n",
cd->hdr.keyblock[i].passwordIterations);
log_std(cd, "\tSalt: \t");
hexprintICB(cd, cd->hdr.keyblock[i].passwordSalt,
LUKS_SALTSIZE/2);
log_std(cd, "\n\t \t");
hexprintICB(cd, cd->hdr.keyblock[i].passwordSalt +
LUKS_SALTSIZE/2, LUKS_SALTSIZE/2);
log_std(cd, "\n");
log_std(cd, "\tKey material offset:\t%d\n",
cd->hdr.keyblock[i].keyMaterialOffset);
log_std(cd, "\tAF stripes: \t%d\n",
cd->hdr.keyblock[i].stripes);
}
else
log_std(cd, "Key Slot %d: DISABLED\n", i);
}
return 0;
}
const char *crypt_get_cipher(struct crypt_device *cd)
{
if (isPLAIN(cd->type))
return cd->plain_cipher;
if (isLUKS(cd->type))
return cd->hdr.cipherName;
if (isLOOPAES(cd->type))
return cd->loopaes_cipher;
return NULL;
}
const char *crypt_get_cipher_mode(struct crypt_device *cd)
{
if (isPLAIN(cd->type))
return cd->plain_cipher_mode;
if (isLUKS(cd->type))
return cd->hdr.cipherMode;
if (isLOOPAES(cd->type))
return cd->loopaes_cipher_mode;
return NULL;
}
const char *crypt_get_uuid(struct crypt_device *cd)
{
if (isLUKS(cd->type))
return cd->hdr.uuid;
if (isPLAIN(cd->type))
return cd->plain_uuid;
if (isLOOPAES(cd->type))
return cd->loopaes_uuid;
return NULL;
}
const char *crypt_get_device_name(struct crypt_device *cd)
{
return cd->device;
}
int crypt_get_volume_key_size(struct crypt_device *cd)
{
if (isPLAIN(cd->type) && cd->volume_key)
return cd->volume_key->keylength;
if (isLUKS(cd->type))
return cd->hdr.keyBytes;
if (isLOOPAES(cd->type))
return cd->loopaes_key_size;
return 0;
}
uint64_t crypt_get_data_offset(struct crypt_device *cd)
{
if (isPLAIN(cd->type))
return cd->plain_hdr.offset;
if (isLUKS(cd->type))
return cd->hdr.payloadOffset;
if (isLOOPAES(cd->type))
return cd->loopaes_hdr.offset;
return 0;
}
uint64_t crypt_get_iv_offset(struct crypt_device *cd)
{
if (isPLAIN(cd->type))
return cd->plain_hdr.skip;
if (isLUKS(cd->type))
return 0;
if (isLOOPAES(cd->type))
return cd->loopaes_hdr.skip;
return 0;
}
crypt_keyslot_info crypt_keyslot_status(struct crypt_device *cd, int keyslot)
{
if (!isLUKS(cd->type)) {
log_err(cd, _("This operation is supported only for LUKS device.\n"));
return CRYPT_SLOT_INVALID;
}
return LUKS_keyslot_info(&cd->hdr, keyslot);
}
int crypt_keyslot_max(const char *type)
{
if (type && isLUKS(type))
return LUKS_NUMKEYS;
return -EINVAL;
}
const char *crypt_get_type(struct crypt_device *cd)
{
return cd->type;
}
int crypt_get_active_device(struct crypt_device *cd __attribute__((unused)),
const char *name,
struct crypt_active_device *cad)
{
struct crypt_dm_active_device dmd;
int r;
r = dm_query_device(name, 0, &dmd);
if (r < 0)
return r;
cad->offset = dmd.offset;
cad->iv_offset = dmd.iv_offset;
cad->size = dmd.size;
cad->flags = dmd.flags;
return 0;
}