Files
cryptsetup/lib/keyslot_context.c

1257 lines
31 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* LUKS - Linux Unified Key Setup, keyslot unlock helpers
*
* Copyright (C) 2022-2025 Red Hat, Inc. All rights reserved.
* Copyright (C) 2022-2025 Ondrej Kozina
*/
#include <errno.h>
#include "bitlk/bitlk.h"
#include "fvault2/fvault2.h"
#include "luks1/luks.h"
#include "luks2/luks2.h"
#include "keyslot_context.h"
static int get_luks2_key_by_passphrase(struct crypt_device *cd,
struct crypt_keyslot_context *kc,
int keyslot,
int segment,
struct volume_key **r_vk)
{
int r;
assert(cd);
assert(kc && kc->type == CRYPT_KC_TYPE_PASSPHRASE);
assert(r_vk);
r = LUKS2_keyslot_open(cd, keyslot, segment, kc->u.p.passphrase, kc->u.p.passphrase_size, r_vk);
if (r < 0)
kc->error = r;
return r;
}
static int get_luks1_volume_key_by_passphrase(struct crypt_device *cd,
struct crypt_keyslot_context *kc,
int keyslot,
struct volume_key **r_vk)
{
int r;
assert(cd);
assert(kc && kc->type == CRYPT_KC_TYPE_PASSPHRASE);
assert(r_vk);
r = LUKS_open_key_with_hdr(keyslot, kc->u.p.passphrase, kc->u.p.passphrase_size,
crypt_get_hdr(cd, CRYPT_LUKS1), r_vk, cd);
if (r < 0)
kc->error = r;
return r;
}
static int get_luks2_volume_key_by_passphrase(struct crypt_device *cd,
struct crypt_keyslot_context *kc,
int keyslot,
struct volume_key **r_vk)
{
return get_luks2_key_by_passphrase(cd, kc, keyslot, CRYPT_DEFAULT_SEGMENT, r_vk);
}
static int get_bitlk_volume_key_by_passphrase(struct crypt_device *cd,
struct crypt_keyslot_context *kc,
const struct bitlk_metadata *params,
struct volume_key **r_vk)
{
int r;
assert(cd);
assert(kc && kc->type == CRYPT_KC_TYPE_PASSPHRASE);
assert(params);
assert(r_vk);
r = BITLK_get_volume_key(cd, kc->u.p.passphrase, kc->u.p.passphrase_size, params, r_vk);
if (r < 0)
kc->error = r;
return r;
}
static int get_fvault2_volume_key_by_passphrase(struct crypt_device *cd,
struct crypt_keyslot_context *kc,
const struct fvault2_params *params,
struct volume_key **r_vk)
{
int r;
assert(cd);
assert(kc && kc->type == CRYPT_KC_TYPE_PASSPHRASE);
assert(params);
assert(r_vk);
r = FVAULT2_get_volume_key(cd, kc->u.p.passphrase, kc->u.p.passphrase_size, params, r_vk);
if (r < 0)
kc->error = r;
return r;
}
static int get_passphrase_by_passphrase(struct crypt_device *cd,
struct crypt_keyslot_context *kc,
const char **r_passphrase,
size_t *r_passphrase_size)
{
assert(cd);
assert(kc && kc->type == CRYPT_KC_TYPE_PASSPHRASE);
assert(r_passphrase);
assert(r_passphrase_size);
*r_passphrase = kc->u.p.passphrase;
*r_passphrase_size = kc->u.p.passphrase_size;
return 0;
}
static int get_passphrase_by_keyfile(struct crypt_device *cd,
struct crypt_keyslot_context *kc,
const char **r_passphrase,
size_t *r_passphrase_size)
{
int r;
assert(cd);
assert(kc && kc->type == CRYPT_KC_TYPE_KEYFILE);
assert(r_passphrase);
assert(r_passphrase_size);
if (!kc->i_passphrase) {
r = crypt_keyfile_device_read(cd, kc->u.kf.keyfile,
&kc->i_passphrase, &kc->i_passphrase_size,
kc->u.kf.keyfile_offset, kc->u.kf.keyfile_size, 0);
if (r < 0) {
kc->error = r;
return r;
}
}
*r_passphrase = kc->i_passphrase;
*r_passphrase_size = kc->i_passphrase_size;
return 0;
}
static int get_luks2_key_by_keyfile(struct crypt_device *cd,
struct crypt_keyslot_context *kc,
int keyslot,
int segment,
struct volume_key **r_vk)
{
int r;
const char *passphrase;
size_t passphrase_size;
assert(cd);
assert(kc && kc->type == CRYPT_KC_TYPE_KEYFILE);
assert(r_vk);
r = get_passphrase_by_keyfile(cd, kc, &passphrase, &passphrase_size);
if (r)
return r;
r = LUKS2_keyslot_open(cd, keyslot, segment, passphrase, passphrase_size, r_vk);
if (r < 0)
kc->error = r;
return r;
}
static int get_luks2_volume_key_by_keyfile(struct crypt_device *cd,
struct crypt_keyslot_context *kc,
int keyslot,
struct volume_key **r_vk)
{
return get_luks2_key_by_keyfile(cd, kc, keyslot, CRYPT_DEFAULT_SEGMENT, r_vk);
}
static int get_luks1_volume_key_by_keyfile(struct crypt_device *cd,
struct crypt_keyslot_context *kc,
int keyslot,
struct volume_key **r_vk)
{
int r;
const char *passphrase;
size_t passphrase_size;
assert(cd);
assert(kc && kc->type == CRYPT_KC_TYPE_KEYFILE);
assert(r_vk);
r = get_passphrase_by_keyfile(cd, kc, &passphrase, &passphrase_size);
if (r)
return r;
r = LUKS_open_key_with_hdr(keyslot, passphrase, passphrase_size,
crypt_get_hdr(cd, CRYPT_LUKS1), r_vk, cd);
if (r < 0)
kc->error = r;
return r;
}
static int get_bitlk_volume_key_by_keyfile(struct crypt_device *cd,
struct crypt_keyslot_context *kc,
const struct bitlk_metadata *params,
struct volume_key **r_vk)
{
int r;
const char *passphrase;
size_t passphrase_size;
assert(cd);
assert(kc && kc->type == CRYPT_KC_TYPE_KEYFILE);
assert(params);
assert(r_vk);
r = get_passphrase_by_keyfile(cd, kc, &passphrase, &passphrase_size);
if (r < 0)
return r;
r = BITLK_get_volume_key(cd, passphrase, passphrase_size, params, r_vk);
if (r < 0)
kc->error = r;
return r;
}
static int get_fvault2_volume_key_by_keyfile(struct crypt_device *cd,
struct crypt_keyslot_context *kc,
const struct fvault2_params *params,
struct volume_key **r_vk)
{
int r;
const char *passphrase;
size_t passphrase_size;
assert(cd);
assert(kc && kc->type == CRYPT_KC_TYPE_KEYFILE);
assert(params);
assert(r_vk);
r = get_passphrase_by_keyfile(cd, kc, &passphrase, &passphrase_size);
if (r < 0)
return r;
r = FVAULT2_get_volume_key(cd, passphrase, passphrase_size, params, r_vk);
if (r < 0)
kc->error = r;
return r;
}
static int get_key_by_key(struct crypt_device *cd __attribute__((unused)),
struct crypt_keyslot_context *kc,
int keyslot __attribute__((unused)),
int segment __attribute__((unused)),
struct volume_key **r_vk)
{
assert(kc && kc->type == CRYPT_KC_TYPE_KEY);
assert(r_vk);
if (!kc->u.k.volume_key) {
kc->error = -ENOENT;
return kc->error;
}
*r_vk = crypt_alloc_volume_key(kc->u.k.volume_key_size, kc->u.k.volume_key);
if (!*r_vk) {
kc->error = -ENOMEM;
return kc->error;
}
return 0;
}
static int get_volume_key_by_key(struct crypt_device *cd,
struct crypt_keyslot_context *kc,
int keyslot __attribute__((unused)),
struct volume_key **r_vk)
{
return get_key_by_key(cd, kc, -2 /* unused */, -2 /* unused */, r_vk);
}
static int get_generic_volume_key_by_key(struct crypt_device *cd,
struct crypt_keyslot_context *kc,
struct volume_key **r_vk)
{
return get_key_by_key(cd, kc, -2 /* unused */, -2 /* unused */, r_vk);
}
static int get_bitlk_volume_key_by_key(struct crypt_device *cd,
struct crypt_keyslot_context *kc,
const struct bitlk_metadata *params __attribute__((unused)),
struct volume_key **r_vk)
{
return get_key_by_key(cd, kc, -2 /* unused */, -2 /* unused */, r_vk);
}
static int get_fvault2_volume_key_by_key(struct crypt_device *cd,
struct crypt_keyslot_context *kc,
const struct fvault2_params *params __attribute__((unused)),
struct volume_key **r_vk)
{
return get_key_by_key(cd, kc, -2 /* unused */, -2 /* unused */, r_vk);
}
static int get_generic_signed_key_by_key(struct crypt_device *cd,
struct crypt_keyslot_context *kc,
struct volume_key **r_vk,
struct volume_key **r_signature)
{
struct volume_key *vk, *vk_sig;
assert(kc && ((kc->type == CRYPT_KC_TYPE_KEY) ||
(kc->type == CRYPT_KC_TYPE_SIGNED_KEY)));
assert(r_vk);
assert(r_signature);
/* return key with no signature */
if (kc->type == CRYPT_KC_TYPE_KEY) {
*r_signature = NULL;
return get_key_by_key(cd, kc, -2 /* unused */, -2 /* unused */, r_vk);
}
if (!kc->u.ks.volume_key || !kc->u.ks.signature) {
kc->error = -EINVAL;
return kc->error;
}
vk = crypt_alloc_volume_key(kc->u.ks.volume_key_size, kc->u.ks.volume_key);
if (!vk) {
kc->error = -ENOMEM;
return kc->error;
}
vk_sig = crypt_alloc_volume_key(kc->u.ks.signature_size, kc->u.ks.signature);
if (!vk_sig) {
crypt_free_volume_key(vk);
kc->error = -ENOMEM;
return kc->error;
}
*r_vk = vk;
*r_signature = vk_sig;
return 0;
}
static int get_luks2_key_by_token(struct crypt_device *cd,
struct crypt_keyslot_context *kc,
int keyslot,
int segment,
struct volume_key **r_vk)
{
int r;
struct luks2_hdr *hdr;
assert(cd);
assert(kc && kc->type == CRYPT_KC_TYPE_TOKEN);
assert(r_vk);
hdr = crypt_get_hdr(cd, CRYPT_LUKS2);
if (!hdr)
return -EINVAL;
r = LUKS2_token_unlock_key(cd, hdr, keyslot, kc->u.t.id, kc->u.t.type,
kc->u.t.pin, kc->u.t.pin_size, segment, kc->u.t.usrptr, r_vk);
if (r < 0)
kc->error = r;
return r;
}
static int get_luks2_volume_key_by_token(struct crypt_device *cd,
struct crypt_keyslot_context *kc,
int keyslot,
struct volume_key **r_vk)
{
return get_luks2_key_by_token(cd, kc, keyslot, CRYPT_DEFAULT_SEGMENT, r_vk);
}
static int get_passphrase_by_token(struct crypt_device *cd,
struct crypt_keyslot_context *kc,
const char **r_passphrase,
size_t *r_passphrase_size)
{
int r;
assert(cd);
assert(kc && kc->type == CRYPT_KC_TYPE_TOKEN);
assert(r_passphrase);
assert(r_passphrase_size);
if (!kc->i_passphrase) {
r = LUKS2_token_unlock_passphrase(cd, crypt_get_hdr(cd, CRYPT_LUKS2), kc->u.t.id,
kc->u.t.type, kc->u.t.pin, kc->u.t.pin_size,
kc->u.t.usrptr, &kc->i_passphrase, &kc->i_passphrase_size);
if (r < 0) {
kc->error = r;
return r;
}
kc->u.t.id = r;
}
*r_passphrase = kc->i_passphrase;
*r_passphrase_size = kc->i_passphrase_size;
return kc->u.t.id;
}
static int get_passphrase_by_keyring(struct crypt_device *cd,
struct crypt_keyslot_context *kc,
const char **r_passphrase,
size_t *r_passphrase_size)
{
int r;
assert(cd);
assert(kc && kc->type == CRYPT_KC_TYPE_KEYRING);
assert(r_passphrase);
assert(r_passphrase_size);
if (!kc->i_passphrase) {
r = crypt_keyring_get_user_key(cd, kc->u.kr.key_description,
&kc->i_passphrase, &kc->i_passphrase_size);
if (r < 0) {
log_err(cd, _("Failed to read passphrase from keyring."));
kc->error = -EINVAL;
return -EINVAL;
}
}
*r_passphrase = kc->i_passphrase;
*r_passphrase_size = kc->i_passphrase_size;
return 0;
}
static int get_luks2_key_by_keyring(struct crypt_device *cd,
struct crypt_keyslot_context *kc,
int keyslot,
int segment,
struct volume_key **r_vk)
{
int r;
assert(cd);
assert(kc && kc->type == CRYPT_KC_TYPE_KEYRING);
assert(r_vk);
r = get_passphrase_by_keyring(cd, kc, CONST_CAST(const char **) &kc->i_passphrase,
&kc->i_passphrase_size);
if (r < 0) {
log_err(cd, _("Failed to read passphrase from keyring."));
kc->error = -EINVAL;
return -EINVAL;
}
r = LUKS2_keyslot_open(cd, keyslot, segment, kc->i_passphrase, kc->i_passphrase_size, r_vk);
if (r < 0)
kc->error = r;
return r;
}
static int get_luks2_volume_key_by_keyring(struct crypt_device *cd,
struct crypt_keyslot_context *kc,
int keyslot,
struct volume_key **r_vk)
{
return get_luks2_key_by_keyring(cd, kc, keyslot, CRYPT_DEFAULT_SEGMENT, r_vk);
}
static int get_luks1_volume_key_by_keyring(struct crypt_device *cd,
struct crypt_keyslot_context *kc,
int keyslot,
struct volume_key **r_vk)
{
int r;
assert(cd);
assert(kc && kc->type == CRYPT_KC_TYPE_PASSPHRASE);
assert(r_vk);
r = get_passphrase_by_keyring(cd, kc, CONST_CAST(const char **) &kc->i_passphrase,
&kc->i_passphrase_size);
if (r < 0) {
log_err(cd, _("Failed to read passphrase from keyring."));
kc->error = -EINVAL;
return -EINVAL;
}
r = LUKS_open_key_with_hdr(keyslot, kc->i_passphrase, kc->i_passphrase_size,
crypt_get_hdr(cd, CRYPT_LUKS1), r_vk, cd);
if (r < 0)
kc->error = r;
return r;
}
static int get_key_by_vk_in_keyring(struct crypt_device *cd,
struct crypt_keyslot_context *kc,
int keyslot __attribute__((unused)),
int segment __attribute__((unused)),
struct volume_key **r_vk)
{
char *key;
size_t key_size;
int r;
assert(cd);
assert(kc && kc->type == CRYPT_KC_TYPE_VK_KEYRING);
assert(r_vk);
r = crypt_keyring_get_key_by_name(cd, kc->u.vk_kr.key_description,
&key, &key_size);
if (r < 0) {
log_err(cd, _("Failed to read volume key candidate from keyring."));
kc->error = -EINVAL;
return -EINVAL;
}
*r_vk = crypt_alloc_volume_key_by_safe_alloc((void **)&key);
if (!*r_vk) {
crypt_safe_free(key);
kc->error = -ENOMEM;
return kc->error;
}
return 0;
}
static int get_volume_key_by_vk_in_keyring(struct crypt_device *cd,
struct crypt_keyslot_context *kc,
int keyslot __attribute__((unused)),
struct volume_key **r_vk)
{
return get_key_by_vk_in_keyring(cd, kc, -2 /* unused */, -2 /* unused */, r_vk);
}
static void crypt_keyslot_context_init_common(struct crypt_keyslot_context *kc)
{
assert(kc);
kc->version = KC_VERSION_BASIC;
kc->error = 0;
kc->i_passphrase = NULL;
kc->i_passphrase_size = 0;
}
static void keyring_context_free(struct crypt_keyslot_context *kc)
{
assert(kc && kc->type == CRYPT_KC_TYPE_KEYRING);
free(kc->u.kr.i_key_description);
}
static int keyring_get_key_size(struct crypt_device *cd, struct crypt_keyslot_context *kc, size_t *r_key_size)
{
int r;
assert(kc && kc->type == CRYPT_KC_TYPE_VK_KEYRING);
assert(r_key_size);
if (!kc->u.vk_kr.i_key_size) {
r = crypt_keyring_get_keysize_by_name(cd, kc->u.vk_kr.key_description, &kc->u.vk_kr.i_key_size);
if (r < 0)
return r;
}
*r_key_size = kc->u.vk_kr.i_key_size;
return 0;
}
void crypt_keyslot_context_init_by_keyring_internal(struct crypt_keyslot_context *kc,
const char *key_description)
{
assert(kc);
kc->type = CRYPT_KC_TYPE_KEYRING;
kc->u.kr.key_description = key_description;
kc->get_luks2_key = get_luks2_key_by_keyring;
kc->get_luks1_volume_key = get_luks1_volume_key_by_keyring;
kc->get_luks2_volume_key = get_luks2_volume_key_by_keyring;
kc->get_passphrase = get_passphrase_by_keyring;
kc->context_free = keyring_context_free;
crypt_keyslot_context_init_common(kc);
}
static void key_context_free(struct crypt_keyslot_context *kc)
{
assert(kc && kc->type == CRYPT_KC_TYPE_KEY);
crypt_free_volume_key(kc->u.k.i_vk);
}
static int key_get_key_size(struct crypt_device *cd __attribute__((unused)),
struct crypt_keyslot_context *kc,
size_t *r_key_size)
{
assert(kc && kc->type == CRYPT_KC_TYPE_KEY);
assert(r_key_size);
*r_key_size = kc->u.k.volume_key_size;
return 0;
}
void crypt_keyslot_context_init_by_key_internal(struct crypt_keyslot_context *kc,
const char *volume_key,
size_t volume_key_size)
{
assert(kc);
kc->type = CRYPT_KC_TYPE_KEY;
kc->u.k.volume_key = volume_key;
kc->u.k.volume_key_size = volume_key_size;
kc->get_luks2_key = get_key_by_key;
kc->get_luks1_volume_key = get_volume_key_by_key;
kc->get_luks2_volume_key = get_volume_key_by_key;
kc->get_plain_volume_key = get_generic_volume_key_by_key;
kc->get_bitlk_volume_key = get_bitlk_volume_key_by_key;
kc->get_fvault2_volume_key = get_fvault2_volume_key_by_key;
kc->get_verity_volume_key = get_generic_signed_key_by_key;
kc->get_integrity_volume_key = get_generic_volume_key_by_key;
kc->get_key_size = key_get_key_size;
kc->context_free = key_context_free;
crypt_keyslot_context_init_common(kc);
}
static void signed_key_context_free(struct crypt_keyslot_context *kc)
{
assert(kc && kc->type == CRYPT_KC_TYPE_SIGNED_KEY);
crypt_free_volume_key(kc->u.ks.i_vk);
crypt_free_volume_key(kc->u.ks.i_vk_sig);
}
void crypt_keyslot_context_init_by_signed_key_internal(struct crypt_keyslot_context *kc,
const char *volume_key,
size_t volume_key_size,
const char *signature,
size_t signature_size)
{
assert(kc);
kc->type = CRYPT_KC_TYPE_SIGNED_KEY;
kc->u.ks.volume_key = volume_key;
kc->u.ks.volume_key_size = volume_key_size;
kc->u.ks.signature = signature;
kc->u.ks.signature_size = signature_size;
kc->get_verity_volume_key = get_generic_signed_key_by_key;
kc->context_free = signed_key_context_free;
crypt_keyslot_context_init_common(kc);
}
void crypt_keyslot_context_init_by_passphrase_internal(struct crypt_keyslot_context *kc,
const char *passphrase,
size_t passphrase_size)
{
assert(kc);
kc->type = CRYPT_KC_TYPE_PASSPHRASE;
kc->u.p.passphrase = passphrase;
kc->u.p.passphrase_size = passphrase_size;
kc->get_luks2_key = get_luks2_key_by_passphrase;
kc->get_luks1_volume_key = get_luks1_volume_key_by_passphrase;
kc->get_luks2_volume_key = get_luks2_volume_key_by_passphrase;
kc->get_bitlk_volume_key = get_bitlk_volume_key_by_passphrase;
kc->get_fvault2_volume_key = get_fvault2_volume_key_by_passphrase;
kc->get_passphrase = get_passphrase_by_passphrase;
crypt_keyslot_context_init_common(kc);
}
static void keyfile_context_free(struct crypt_keyslot_context *kc)
{
assert(kc && kc->type == CRYPT_KC_TYPE_KEYFILE);
free(kc->u.kf.i_keyfile);
}
void crypt_keyslot_context_init_by_keyfile_internal(struct crypt_keyslot_context *kc,
const char *keyfile,
size_t keyfile_size,
uint64_t keyfile_offset)
{
assert(kc);
kc->type = CRYPT_KC_TYPE_KEYFILE;
kc->u.kf.keyfile = keyfile;
kc->u.kf.keyfile_offset = keyfile_offset;
kc->u.kf.keyfile_size = keyfile_size;
kc->get_luks2_key = get_luks2_key_by_keyfile;
kc->get_luks1_volume_key = get_luks1_volume_key_by_keyfile;
kc->get_luks2_volume_key = get_luks2_volume_key_by_keyfile;
kc->get_bitlk_volume_key = get_bitlk_volume_key_by_keyfile;
kc->get_fvault2_volume_key = get_fvault2_volume_key_by_keyfile;
kc->get_passphrase = get_passphrase_by_keyfile;
kc->context_free = keyfile_context_free;
crypt_keyslot_context_init_common(kc);
}
static void token_context_free(struct crypt_keyslot_context *kc)
{
assert(kc && kc->type == CRYPT_KC_TYPE_TOKEN);
free(kc->u.t.i_type);
crypt_safe_free(kc->u.t.i_pin);
}
void crypt_keyslot_context_init_by_token_internal(struct crypt_keyslot_context *kc,
int token,
const char *type,
const char *pin,
size_t pin_size,
void *usrptr)
{
assert(kc);
kc->type = CRYPT_KC_TYPE_TOKEN;
kc->u.t.id = token;
kc->u.t.type = type;
kc->u.t.pin = pin;
kc->u.t.pin_size = pin_size;
kc->u.t.usrptr = usrptr;
kc->get_luks2_key = get_luks2_key_by_token;
kc->get_luks2_volume_key = get_luks2_volume_key_by_token;
kc->get_passphrase = get_passphrase_by_token;
kc->context_free = token_context_free;
crypt_keyslot_context_init_common(kc);
}
static void vk_in_keyring_context_free(struct crypt_keyslot_context *kc)
{
assert(kc && kc->type == CRYPT_KC_TYPE_VK_KEYRING);
free(kc->u.vk_kr.i_key_description);
}
void crypt_keyslot_context_destroy_internal(struct crypt_keyslot_context *kc)
{
if (!kc)
return;
if (kc->context_free)
kc->context_free(kc);
crypt_safe_free(kc->i_passphrase);
}
void crypt_keyslot_context_free(struct crypt_keyslot_context *kc)
{
crypt_keyslot_context_destroy_internal(kc);
free(kc);
}
static int _crypt_keyslot_context_init_by_passphrase(const char *passphrase,
size_t passphrase_size,
struct crypt_keyslot_context **kc,
bool self_contained)
{
struct crypt_keyslot_context *tmp;
char *i_passphrase = NULL;
if (!kc || !passphrase)
return -EINVAL;
tmp = crypt_zalloc(sizeof(*tmp));
if (!tmp)
return -ENOMEM;
if (self_contained) {
if (passphrase_size) {
i_passphrase = crypt_safe_alloc(passphrase_size);
if (!i_passphrase) {
free(tmp);
return -ENOMEM;
}
crypt_safe_memcpy(i_passphrase, passphrase, passphrase_size);
passphrase = i_passphrase;
} else
/*
* some crypto backend libraries expect a pointer even though
* passed passphrase size is set to zero.
*/
passphrase = "";
}
crypt_keyslot_context_init_by_passphrase_internal(tmp, passphrase, passphrase_size);
if (self_contained) {
tmp->i_passphrase = i_passphrase;
tmp->i_passphrase_size = passphrase_size;
tmp->version = KC_VERSION_SELF_CONTAINED;
}
*kc = tmp;
return 0;
}
CRYPT_SYMBOL_EXPORT_NEW(int, crypt_keyslot_context_init_by_passphrase, 2, 8,
/* crypt_keyslot_context_init_by_passphrase parameters follows */
struct crypt_device *cd __attribute__((unused)),
const char *passphrase,
size_t passphrase_size,
struct crypt_keyslot_context **kc)
{
return _crypt_keyslot_context_init_by_passphrase(passphrase, passphrase_size, kc, true);
}
CRYPT_SYMBOL_EXPORT_OLD(int, crypt_keyslot_context_init_by_passphrase, 2, 6,
/* crypt_keyslot_context_init_by_passphrase parameters follows */
struct crypt_device *cd __attribute__((unused)),
const char *passphrase,
size_t passphrase_size,
struct crypt_keyslot_context **kc)
{
return _crypt_keyslot_context_init_by_passphrase(passphrase, passphrase_size, kc, false);
}
static int _crypt_keyslot_context_init_by_keyfile(const char *keyfile,
size_t keyfile_size,
uint64_t keyfile_offset,
struct crypt_keyslot_context **kc,
bool self_contained)
{
char *i_keyfile;
struct crypt_keyslot_context *tmp;
if (!kc || !keyfile)
return -EINVAL;
tmp = crypt_zalloc(sizeof(*tmp));
if (!tmp)
return -ENOMEM;
if (self_contained) {
i_keyfile = strdup(keyfile);
if (!i_keyfile) {
free(tmp);
return -ENOMEM;
}
keyfile = i_keyfile;
}
crypt_keyslot_context_init_by_keyfile_internal(tmp, keyfile, keyfile_size, keyfile_offset);
if (self_contained) {
tmp->u.kf.i_keyfile = i_keyfile;
tmp->version = KC_VERSION_SELF_CONTAINED;
}
*kc = tmp;
return 0;
}
CRYPT_SYMBOL_EXPORT_NEW(int, crypt_keyslot_context_init_by_keyfile, 2, 8,
/* crypt_keyslot_context_init_by_keyfile parameters follows */
struct crypt_device *cd __attribute__((unused)),
const char *keyfile,
size_t keyfile_size,
uint64_t keyfile_offset,
struct crypt_keyslot_context **kc)
{
return _crypt_keyslot_context_init_by_keyfile(keyfile, keyfile_size, keyfile_offset, kc, true);
}
CRYPT_SYMBOL_EXPORT_OLD(int, crypt_keyslot_context_init_by_keyfile, 2, 6,
/* crypt_keyslot_context_init_by_keyfile parameters follows */
struct crypt_device *cd __attribute__((unused)),
const char *keyfile,
size_t keyfile_size,
uint64_t keyfile_offset,
struct crypt_keyslot_context **kc)
{
return _crypt_keyslot_context_init_by_keyfile(keyfile, keyfile_size, keyfile_offset, kc, false);
}
static int _crypt_keyslot_context_init_by_token(int token,
const char *type,
const char *pin, size_t pin_size,
void *usrptr,
struct crypt_keyslot_context **kc,
bool self_contained)
{
char *i_type = NULL, *i_pin = NULL;
struct crypt_keyslot_context *tmp;
if (!kc || (token < 0 && token != CRYPT_ANY_TOKEN) ||
(pin && !pin_size))
return -EINVAL;
tmp = crypt_zalloc(sizeof(*tmp));
if (!tmp)
return -ENOMEM;
if (self_contained && type) {
if (!(i_type = strdup(type)))
goto err;
type = i_type;
}
if (self_contained && pin) {
if (!(i_pin = crypt_safe_alloc(pin_size)))
goto err;
crypt_safe_memcpy(i_pin, pin, pin_size);
pin = i_pin;
}
crypt_keyslot_context_init_by_token_internal(tmp, token, type, pin, pin_size, usrptr);
if (self_contained) {
tmp->u.t.i_pin = i_pin;
tmp->u.t.i_type = i_type;
tmp->version = KC_VERSION_SELF_CONTAINED;
}
*kc = tmp;
return 0;
err:
crypt_safe_free(i_pin);
free(i_type);
free(tmp);
return -ENOMEM;
}
CRYPT_SYMBOL_EXPORT_NEW(int, crypt_keyslot_context_init_by_token, 2, 8,
/* crypt_keyslot_context_init_by_token parameters follows */
struct crypt_device *cd __attribute__((unused)),
int token,
const char *type,
const char *pin, size_t pin_size,
void *usrptr,
struct crypt_keyslot_context **kc)
{
return _crypt_keyslot_context_init_by_token(token, type, pin, pin_size, usrptr, kc, true);
}
CRYPT_SYMBOL_EXPORT_OLD(int, crypt_keyslot_context_init_by_token, 2, 6,
/* crypt_keyslot_context_init_by_token parameters follows */
struct crypt_device *cd __attribute__((unused)),
int token,
const char *type,
const char *pin, size_t pin_size,
void *usrptr,
struct crypt_keyslot_context **kc)
{
return _crypt_keyslot_context_init_by_token(token, type, pin, pin_size, usrptr, kc, false);
}
static int _crypt_keyslot_context_init_by_volume_key(const char *volume_key,
size_t volume_key_size,
struct crypt_keyslot_context **kc,
bool self_contained)
{
struct volume_key *i_vk = NULL;
struct crypt_keyslot_context *tmp;
if (!kc)
return -EINVAL;
tmp = crypt_zalloc(sizeof(*tmp));
if (!tmp)
return -ENOMEM;
if (self_contained && volume_key) {
if (!(i_vk = crypt_alloc_volume_key(volume_key_size, volume_key))) {
free(tmp);
return -ENOMEM;
}
volume_key = crypt_volume_key_get_key(i_vk);
}
crypt_keyslot_context_init_by_key_internal(tmp, volume_key, volume_key_size);
if (self_contained) {
tmp->u.k.i_vk = i_vk;
tmp->version = KC_VERSION_SELF_CONTAINED;
}
*kc = tmp;
return 0;
}
CRYPT_SYMBOL_EXPORT_NEW(int, crypt_keyslot_context_init_by_volume_key, 2, 8,
/* crypt_keyslot_context_init_by_volume_key parameters follows */
struct crypt_device *cd __attribute__((unused)),
const char *volume_key,
size_t volume_key_size,
struct crypt_keyslot_context **kc)
{
return _crypt_keyslot_context_init_by_volume_key(volume_key, volume_key_size, kc, true);
}
CRYPT_SYMBOL_EXPORT_OLD(int, crypt_keyslot_context_init_by_volume_key, 2, 6,
/* crypt_keyslot_context_init_by_volume_key parameters follows */
struct crypt_device *cd __attribute__((unused)),
const char *volume_key,
size_t volume_key_size,
struct crypt_keyslot_context **kc)
{
return _crypt_keyslot_context_init_by_volume_key(volume_key, volume_key_size, kc, false);
}
static int _crypt_keyslot_context_init_by_signed_key(const char *volume_key,
size_t volume_key_size,
const char *signature,
size_t signature_size,
struct crypt_keyslot_context **kc,
bool self_contained)
{
struct volume_key *i_vk = NULL, *i_vk_sig = NULL;
struct crypt_keyslot_context *tmp;
if (!kc)
return -EINVAL;
tmp = crypt_zalloc(sizeof(*tmp));
if (!tmp)
return -ENOMEM;
if (self_contained && volume_key) {
if (!(i_vk = crypt_alloc_volume_key(volume_key_size, volume_key)))
goto err;
volume_key = crypt_volume_key_get_key(i_vk);
}
if (self_contained && signature) {
if (!(i_vk_sig = crypt_alloc_volume_key(signature_size, signature)))
goto err;
signature = crypt_volume_key_get_key(i_vk_sig);
}
crypt_keyslot_context_init_by_signed_key_internal(tmp, volume_key, volume_key_size,
signature, signature_size);
if (self_contained) {
tmp->u.ks.i_vk = i_vk;
tmp->u.ks.i_vk_sig = i_vk_sig;
tmp->version = KC_VERSION_SELF_CONTAINED;
}
*kc = tmp;
return 0;
err:
crypt_free_volume_key(i_vk);
crypt_free_volume_key(i_vk_sig);
free(tmp);
return -ENOMEM;
}
CRYPT_SYMBOL_EXPORT_NEW(int, crypt_keyslot_context_init_by_signed_key, 2, 8,
/* crypt_keyslot_context_init_by_signed_key parameters follows */
struct crypt_device *cd __attribute__((unused)),
const char *volume_key,
size_t volume_key_size,
const char *signature,
size_t signature_size,
struct crypt_keyslot_context **kc)
{
return _crypt_keyslot_context_init_by_signed_key(volume_key, volume_key_size, signature, signature_size, kc, true);
}
CRYPT_SYMBOL_EXPORT_OLD(int, crypt_keyslot_context_init_by_signed_key, 2, 7,
/* crypt_keyslot_context_init_by_signed_key parameters follows */
struct crypt_device *cd __attribute__((unused)),
const char *volume_key,
size_t volume_key_size,
const char *signature,
size_t signature_size,
struct crypt_keyslot_context **kc)
{
return _crypt_keyslot_context_init_by_signed_key(volume_key, volume_key_size, signature, signature_size, kc, false);
}
static int _crypt_keyslot_context_init_by_keyring(const char *key_description,
struct crypt_keyslot_context **kc,
bool self_contained)
{
char *i_key_description;
struct crypt_keyslot_context *tmp;
if (!kc || !key_description)
return -EINVAL;
tmp = crypt_zalloc(sizeof(*tmp));
if (!tmp)
return -ENOMEM;
if (self_contained) {
if (!(i_key_description = strdup(key_description))) {
free(tmp);
return -ENOMEM;
}
key_description = i_key_description;
}
crypt_keyslot_context_init_by_keyring_internal(tmp, key_description);
if (self_contained) {
tmp->u.kr.i_key_description = i_key_description;
tmp->version = KC_VERSION_SELF_CONTAINED;
}
*kc = tmp;
return 0;
}
CRYPT_SYMBOL_EXPORT_NEW(int, crypt_keyslot_context_init_by_keyring, 2, 8,
/* crypt_keyslot_context_init_by_keyring parameters follows */
struct crypt_device *cd __attribute__((unused)),
const char *key_description,
struct crypt_keyslot_context **kc)
{
return _crypt_keyslot_context_init_by_keyring(key_description, kc, true);
}
CRYPT_SYMBOL_EXPORT_OLD(int, crypt_keyslot_context_init_by_keyring, 2, 7,
/* crypt_keyslot_context_init_by_keyring parameters follows */
struct crypt_device *cd __attribute__((unused)),
const char *key_description,
struct crypt_keyslot_context **kc)
{
return _crypt_keyslot_context_init_by_keyring(key_description, kc, false);
}
static int _crypt_keyslot_context_init_by_vk_in_keyring(const char *key_description,
struct crypt_keyslot_context **kc,
bool self_contained)
{
char *i_key_description;
struct crypt_keyslot_context *tmp;
if (!kc || !key_description)
return -EINVAL;
tmp = crypt_zalloc(sizeof(*tmp));
if (!tmp)
return -ENOMEM;
if (self_contained) {
if (!(i_key_description = strdup(key_description))) {
free(tmp);
return -ENOMEM;
}
key_description = i_key_description;
}
tmp->type = CRYPT_KC_TYPE_VK_KEYRING;
tmp->u.vk_kr.key_description = key_description;
tmp->get_luks2_key = get_key_by_vk_in_keyring;
tmp->get_luks2_volume_key = get_volume_key_by_vk_in_keyring;
tmp->get_key_size = keyring_get_key_size;
tmp->context_free = vk_in_keyring_context_free;
crypt_keyslot_context_init_common(tmp);
if (self_contained) {
tmp->u.vk_kr.i_key_description = i_key_description;
tmp->version = KC_VERSION_SELF_CONTAINED;
}
*kc = tmp;
return 0;
}
CRYPT_SYMBOL_EXPORT_NEW(int, crypt_keyslot_context_init_by_vk_in_keyring, 2, 8,
/* crypt_keyslot_context_init_by_vk_in_keyring parameters follows */
struct crypt_device *cd __attribute__((unused)),
const char *key_description,
struct crypt_keyslot_context **kc)
{
return _crypt_keyslot_context_init_by_vk_in_keyring(key_description, kc, true);
}
CRYPT_SYMBOL_EXPORT_OLD(int, crypt_keyslot_context_init_by_vk_in_keyring, 2, 7,
/* crypt_keyslot_context_init_by_vk_in_keyring parameters follows */
struct crypt_device *cd __attribute__((unused)),
const char *key_description,
struct crypt_keyslot_context **kc)
{
return _crypt_keyslot_context_init_by_vk_in_keyring(key_description, kc, false);
}
int crypt_keyslot_context_get_error(struct crypt_keyslot_context *kc)
{
return kc ? kc->error : -EINVAL;
}
int crypt_keyslot_context_set_pin(struct crypt_device *cd __attribute__((unused)),
const char *pin, size_t pin_size,
struct crypt_keyslot_context *kc)
{
char *i_pin = NULL;
if (!kc || kc->type != CRYPT_KC_TYPE_TOKEN)
return -EINVAL;
if (kc->version >= KC_VERSION_SELF_CONTAINED && pin) {
if (!(i_pin = crypt_safe_alloc(pin_size)))
return -ENOMEM;
crypt_safe_memcpy(i_pin, pin, pin_size);
}
crypt_safe_free(kc->u.t.i_pin);
kc->u.t.i_pin = i_pin;
kc->u.t.pin = i_pin ?: pin;
kc->u.t.pin_size = pin_size;
kc->error = 0;
return 0;
}
int crypt_keyslot_context_get_type(const struct crypt_keyslot_context *kc)
{
return kc ? kc->type : -EINVAL;
}
const char *keyslot_context_type_string(const struct crypt_keyslot_context *kc)
{
assert(kc);
switch (kc->type) {
case CRYPT_KC_TYPE_PASSPHRASE:
return "passphrase";
case CRYPT_KC_TYPE_KEYFILE:
return "keyfile";
case CRYPT_KC_TYPE_TOKEN:
return "token";
case CRYPT_KC_TYPE_KEY:
return "key";
case CRYPT_KC_TYPE_KEYRING:
return "keyring";
case CRYPT_KC_TYPE_VK_KEYRING:
return "volume key in keyring";
case CRYPT_KC_TYPE_SIGNED_KEY:
return "signed key";
default:
return "<unknown>";
}
}