mirror of
https://gitlab.com/cryptsetup/cryptsetup.git
synced 2025-12-06 00:10:04 +01:00
427 lines
12 KiB
C
427 lines
12 KiB
C
/*
|
|
* Implementation of Password-Based Cryptography as per PKCS#5
|
|
* Copyright (C) 2002,2003 Simon Josefsson
|
|
* Copyright (C) 2004 Free Software Foundation
|
|
*
|
|
* cryptsetup related changes
|
|
* Copyright (C) 2012-2019 Red Hat, Inc. All rights reserved.
|
|
* Copyright (C) 2012-2019 Milan Broz
|
|
*
|
|
* This file is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This file is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this file; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
*/
|
|
|
|
#include <errno.h>
|
|
#include <alloca.h>
|
|
#include "crypto_backend.h"
|
|
|
|
static int hash_buf(const char *src, size_t src_len,
|
|
char *dst, size_t dst_len,
|
|
const char *hash_name)
|
|
{
|
|
struct crypt_hash *hd = NULL;
|
|
int r;
|
|
|
|
if (crypt_hash_init(&hd, hash_name))
|
|
return -EINVAL;
|
|
|
|
r = crypt_hash_write(hd, src, src_len);
|
|
|
|
if (!r)
|
|
r = crypt_hash_final(hd, dst, dst_len);
|
|
|
|
crypt_hash_destroy(hd);
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* 5.2 PBKDF2
|
|
*
|
|
* PBKDF2 applies a pseudorandom function (see Appendix B.1 for an
|
|
* example) to derive keys. The length of the derived key is essentially
|
|
* unbounded. (However, the maximum effective search space for the
|
|
* derived key may be limited by the structure of the underlying
|
|
* pseudorandom function. See Appendix B.1 for further discussion.)
|
|
* PBKDF2 is recommended for new applications.
|
|
*
|
|
* PBKDF2 (P, S, c, dkLen)
|
|
*
|
|
* Options: PRF underlying pseudorandom function (hLen
|
|
* denotes the length in octets of the
|
|
* pseudorandom function output)
|
|
*
|
|
* Input: P password, an octet string (ASCII or UTF-8)
|
|
* S salt, an octet string
|
|
* c iteration count, a positive integer
|
|
* dkLen intended length in octets of the derived
|
|
* key, a positive integer, at most
|
|
* (2^32 - 1) * hLen
|
|
*
|
|
* Output: DK derived key, a dkLen-octet string
|
|
*/
|
|
|
|
/*
|
|
* if hash_block_size is not zero, the HMAC key is pre-hashed
|
|
* inside this function.
|
|
* This prevents situation when crypto backend doesn't support
|
|
* long HMAC keys or it tries hash long key in every iteration
|
|
* (because of crypt_final() cannot do simple key reset.
|
|
*/
|
|
|
|
#define MAX_PRF_BLOCK_LEN 80
|
|
|
|
int pkcs5_pbkdf2(const char *hash,
|
|
const char *P, size_t Plen,
|
|
const char *S, size_t Slen,
|
|
unsigned int c, unsigned int dkLen,
|
|
char *DK, unsigned int hash_block_size)
|
|
{
|
|
struct crypt_hmac *hmac;
|
|
char U[MAX_PRF_BLOCK_LEN];
|
|
char T[MAX_PRF_BLOCK_LEN];
|
|
char P_hash[MAX_PRF_BLOCK_LEN];
|
|
int i, k, rc = -EINVAL;
|
|
unsigned int u, hLen, l, r;
|
|
size_t tmplen = Slen + 4;
|
|
char *tmp;
|
|
|
|
tmp = alloca(tmplen);
|
|
if (tmp == NULL)
|
|
return -ENOMEM;
|
|
|
|
hLen = crypt_hmac_size(hash);
|
|
if (hLen == 0 || hLen > MAX_PRF_BLOCK_LEN)
|
|
return -EINVAL;
|
|
|
|
if (c == 0)
|
|
return -EINVAL;
|
|
|
|
if (dkLen == 0)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
*
|
|
* Steps:
|
|
*
|
|
* 1. If dkLen > (2^32 - 1) * hLen, output "derived key too long" and
|
|
* stop.
|
|
*/
|
|
|
|
if (dkLen > 4294967295U)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* 2. Let l be the number of hLen-octet blocks in the derived key,
|
|
* rounding up, and let r be the number of octets in the last
|
|
* block:
|
|
*
|
|
* l = CEIL (dkLen / hLen) ,
|
|
* r = dkLen - (l - 1) * hLen .
|
|
*
|
|
* Here, CEIL (x) is the "ceiling" function, i.e. the smallest
|
|
* integer greater than, or equal to, x.
|
|
*/
|
|
|
|
l = dkLen / hLen;
|
|
if (dkLen % hLen)
|
|
l++;
|
|
r = dkLen - (l - 1) * hLen;
|
|
|
|
/*
|
|
* 3. For each block of the derived key apply the function F defined
|
|
* below to the password P, the salt S, the iteration count c, and
|
|
* the block index to compute the block:
|
|
*
|
|
* T_1 = F (P, S, c, 1) ,
|
|
* T_2 = F (P, S, c, 2) ,
|
|
* ...
|
|
* T_l = F (P, S, c, l) ,
|
|
*
|
|
* where the function F is defined as the exclusive-or sum of the
|
|
* first c iterates of the underlying pseudorandom function PRF
|
|
* applied to the password P and the concatenation of the salt S
|
|
* and the block index i:
|
|
*
|
|
* F (P, S, c, i) = U_1 \xor U_2 \xor ... \xor U_c
|
|
*
|
|
* where
|
|
*
|
|
* U_1 = PRF (P, S || INT (i)) ,
|
|
* U_2 = PRF (P, U_1) ,
|
|
* ...
|
|
* U_c = PRF (P, U_{c-1}) .
|
|
*
|
|
* Here, INT (i) is a four-octet encoding of the integer i, most
|
|
* significant octet first.
|
|
*
|
|
* 4. Concatenate the blocks and extract the first dkLen octets to
|
|
* produce a derived key DK:
|
|
*
|
|
* DK = T_1 || T_2 || ... || T_l<0..r-1>
|
|
*
|
|
* 5. Output the derived key DK.
|
|
*
|
|
* Note. The construction of the function F follows a "belt-and-
|
|
* suspenders" approach. The iterates U_i are computed recursively to
|
|
* remove a degree of parallelism from an opponent; they are exclusive-
|
|
* ored together to reduce concerns about the recursion degenerating
|
|
* into a small set of values.
|
|
*
|
|
*/
|
|
|
|
/* If hash_block_size is provided, hash password in advance. */
|
|
if (hash_block_size > 0 && Plen > hash_block_size) {
|
|
if (hash_buf(P, Plen, P_hash, hLen, hash))
|
|
return -EINVAL;
|
|
|
|
if (crypt_hmac_init(&hmac, hash, P_hash, hLen))
|
|
return -EINVAL;
|
|
crypt_backend_memzero(P_hash, sizeof(P_hash));
|
|
} else {
|
|
if (crypt_hmac_init(&hmac, hash, P, Plen))
|
|
return -EINVAL;
|
|
}
|
|
|
|
for (i = 1; (unsigned int) i <= l; i++) {
|
|
memset(T, 0, hLen);
|
|
|
|
for (u = 1; u <= c ; u++) {
|
|
if (u == 1) {
|
|
memcpy(tmp, S, Slen);
|
|
tmp[Slen + 0] = (i & 0xff000000) >> 24;
|
|
tmp[Slen + 1] = (i & 0x00ff0000) >> 16;
|
|
tmp[Slen + 2] = (i & 0x0000ff00) >> 8;
|
|
tmp[Slen + 3] = (i & 0x000000ff) >> 0;
|
|
|
|
if (crypt_hmac_write(hmac, tmp, tmplen))
|
|
goto out;
|
|
} else {
|
|
if (crypt_hmac_write(hmac, U, hLen))
|
|
goto out;
|
|
}
|
|
|
|
if (crypt_hmac_final(hmac, U, hLen))
|
|
goto out;
|
|
|
|
for (k = 0; (unsigned int) k < hLen; k++)
|
|
T[k] ^= U[k];
|
|
}
|
|
|
|
memcpy(DK + (i - 1) * hLen, T, (unsigned int) i == l ? r : hLen);
|
|
}
|
|
rc = 0;
|
|
out:
|
|
crypt_hmac_destroy(hmac);
|
|
crypt_backend_memzero(U, sizeof(U));
|
|
crypt_backend_memzero(T, sizeof(T));
|
|
crypt_backend_memzero(tmp, tmplen);
|
|
|
|
return rc;
|
|
}
|
|
|
|
#if 0
|
|
#include <stdio.h>
|
|
|
|
struct test_vector {
|
|
const char *hash;
|
|
unsigned int hash_block_length;
|
|
unsigned int iterations;
|
|
const char *password;
|
|
unsigned int password_length;
|
|
const char *salt;
|
|
unsigned int salt_length;
|
|
const char *output;
|
|
unsigned int output_length;
|
|
};
|
|
|
|
struct test_vector test_vectors[] = {
|
|
/* RFC 3962 */
|
|
{
|
|
"sha1", 64, 1,
|
|
"password", 8,
|
|
"ATHENA.MIT.EDUraeburn", 21,
|
|
"\xcd\xed\xb5\x28\x1b\xb2\xf8\x01"
|
|
"\x56\x5a\x11\x22\xb2\x56\x35\x15"
|
|
"\x0a\xd1\xf7\xa0\x4b\xb9\xf3\xa3"
|
|
"\x33\xec\xc0\xe2\xe1\xf7\x08\x37", 32
|
|
}, {
|
|
"sha1", 64, 2,
|
|
"password", 8,
|
|
"ATHENA.MIT.EDUraeburn", 21,
|
|
"\x01\xdb\xee\x7f\x4a\x9e\x24\x3e"
|
|
"\x98\x8b\x62\xc7\x3c\xda\x93\x5d"
|
|
"\xa0\x53\x78\xb9\x32\x44\xec\x8f"
|
|
"\x48\xa9\x9e\x61\xad\x79\x9d\x86", 32
|
|
}, {
|
|
"sha1", 64, 1200,
|
|
"password", 8,
|
|
"ATHENA.MIT.EDUraeburn", 21,
|
|
"\x5c\x08\xeb\x61\xfd\xf7\x1e\x4e"
|
|
"\x4e\xc3\xcf\x6b\xa1\xf5\x51\x2b"
|
|
"\xa7\xe5\x2d\xdb\xc5\xe5\x14\x2f"
|
|
"\x70\x8a\x31\xe2\xe6\x2b\x1e\x13", 32
|
|
}, {
|
|
"sha1", 64, 5,
|
|
"password", 8,
|
|
"\0224VxxV4\022", 8, // "\x1234567878563412
|
|
"\xd1\xda\xa7\x86\x15\xf2\x87\xe6"
|
|
"\xa1\xc8\xb1\x20\xd7\x06\x2a\x49"
|
|
"\x3f\x98\xd2\x03\xe6\xbe\x49\xa6"
|
|
"\xad\xf4\xfa\x57\x4b\x6e\x64\xee", 32
|
|
}, {
|
|
"sha1", 64, 1200,
|
|
"XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
|
|
"XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", 64,
|
|
"pass phrase equals block size", 29,
|
|
"\x13\x9c\x30\xc0\x96\x6b\xc3\x2b"
|
|
"\xa5\x5f\xdb\xf2\x12\x53\x0a\xc9"
|
|
"\xc5\xec\x59\xf1\xa4\x52\xf5\xcc"
|
|
"\x9a\xd9\x40\xfe\xa0\x59\x8e\xd1", 32
|
|
}, {
|
|
"sha1", 64, 1200,
|
|
"XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
|
|
"XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", 65,
|
|
"pass phrase exceeds block size", 30,
|
|
"\x9c\xca\xd6\xd4\x68\x77\x0c\xd5"
|
|
"\x1b\x10\xe6\xa6\x87\x21\xbe\x61"
|
|
"\x1a\x8b\x4d\x28\x26\x01\xdb\x3b"
|
|
"\x36\xbe\x92\x46\x91\x5e\xc8\x2a", 32
|
|
}, {
|
|
"sha1", 64, 50,
|
|
"\360\235\204\236", 4, // g-clef ("\xf09d849e)
|
|
"EXAMPLE.COMpianist", 18,
|
|
"\x6b\x9c\xf2\x6d\x45\x45\x5a\x43"
|
|
"\xa5\xb8\xbb\x27\x6a\x40\x3b\x39"
|
|
"\xe7\xfe\x37\xa0\xc4\x1e\x02\xc2"
|
|
"\x81\xff\x30\x69\xe1\xe9\x4f\x52", 32
|
|
}, {
|
|
/* RFC-6070 */
|
|
"sha1", 64, 1,
|
|
"password", 8,
|
|
"salt", 4,
|
|
"\x0c\x60\xc8\x0f\x96\x1f\x0e\x71\xf3\xa9"
|
|
"\xb5\x24\xaf\x60\x12\x06\x2f\xe0\x37\xa6", 20
|
|
}, {
|
|
"sha1", 64, 2,
|
|
"password", 8,
|
|
"salt", 4,
|
|
"\xea\x6c\x01\x4d\xc7\x2d\x6f\x8c\xcd\x1e"
|
|
"\xd9\x2a\xce\x1d\x41\xf0\xd8\xde\x89\x57", 20
|
|
}, {
|
|
"sha1", 64, 4096,
|
|
"password", 8,
|
|
"salt", 4,
|
|
"\x4b\x00\x79\x01\xb7\x65\x48\x9a\xbe\xad"
|
|
"\x49\xd9\x26\xf7\x21\xd0\x65\xa4\x29\xc1", 20
|
|
}, {
|
|
"sha1", 64, 16777216,
|
|
"password", 8,
|
|
"salt", 4,
|
|
"\xee\xfe\x3d\x61\xcd\x4d\xa4\xe4\xe9\x94"
|
|
"\x5b\x3d\x6b\xa2\x15\x8c\x26\x34\xe9\x84", 20
|
|
}, {
|
|
"sha1", 64, 4096,
|
|
"passwordPASSWORDpassword", 24,
|
|
"saltSALTsaltSALTsaltSALTsaltSALTsalt", 36,
|
|
"\x3d\x2e\xec\x4f\xe4\x1c\x84\x9b\x80\xc8"
|
|
"\xd8\x36\x62\xc0\xe4\x4a\x8b\x29\x1a\x96"
|
|
"\x4c\xf2\xf0\x70\x38", 25
|
|
}, {
|
|
"sha1", 64, 4096,
|
|
"pass\0word", 9,
|
|
"sa\0lt", 5,
|
|
"\x56\xfa\x6a\xa7\x55\x48\x09\x9d\xcc\x37"
|
|
"\xd7\xf0\x34\x25\xe0\xc3", 16
|
|
}, {
|
|
/* empty password test */
|
|
"sha1", 64, 2,
|
|
"", 0,
|
|
"salt", 4,
|
|
"\x13\x3a\x4c\xe8\x37\xb4\xd2\x52\x1e\xe2"
|
|
"\xbf\x03\xe1\x1c\x71\xca\x79\x4e\x07\x97", 20
|
|
}, {
|
|
/* Password exceeds block size test */
|
|
"sha256", 64, 1200,
|
|
"XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
|
|
"XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", 65,
|
|
"pass phrase exceeds block size", 30,
|
|
"\x22\x34\x4b\xc4\xb6\xe3\x26\x75"
|
|
"\xa8\x09\x0f\x3e\xa8\x0b\xe0\x1d"
|
|
"\x5f\x95\x12\x6a\x2c\xdd\xc3\xfa"
|
|
"\xcc\x4a\x5e\x6d\xca\x04\xec\x58", 32
|
|
}, {
|
|
"sha512", 128, 1200,
|
|
"XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
|
|
"XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
|
|
"XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
|
|
"XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", 129,
|
|
"pass phrase exceeds block size", 30,
|
|
"\x0f\xb2\xed\x2c\x0e\x6e\xfb\x7d"
|
|
"\x7d\x8e\xdd\x58\x01\xb4\x59\x72"
|
|
"\x99\x92\x16\x30\x5e\xa4\x36\x8d"
|
|
"\x76\x14\x80\xf3\xe3\x7a\x22\xb9", 32
|
|
}, {
|
|
"whirlpool", 64, 1200,
|
|
"XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
|
|
"XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", 65,
|
|
"pass phrase exceeds block size", 30,
|
|
"\x9c\x1c\x74\xf5\x88\x26\xe7\x6a"
|
|
"\x53\x58\xf4\x0c\x39\xe7\x80\x89"
|
|
"\x07\xc0\x31\x19\x9a\x50\xa2\x48"
|
|
"\xf1\xd9\xfe\x78\x64\xe5\x84\x50", 32
|
|
}
|
|
};
|
|
|
|
static void printhex(const char *s, const char *buf, size_t len)
|
|
{
|
|
size_t i;
|
|
|
|
printf("%s: ", s);
|
|
for (i = 0; i < len; i++)
|
|
printf("\\x%02x", (unsigned char)buf[i]);
|
|
printf("\n");
|
|
fflush(stdout);
|
|
}
|
|
|
|
static int pkcs5_pbkdf2_test_vectors(void)
|
|
{
|
|
char result[64];
|
|
unsigned int i, j;
|
|
struct test_vector *vec;
|
|
|
|
for (i = 0; i < (sizeof(test_vectors) / sizeof(*test_vectors)); i++) {
|
|
vec = &test_vectors[i];
|
|
for (j = 1; j <= vec->output_length; j++) {
|
|
if (pkcs5_pbkdf2(vec->hash,
|
|
vec->password, vec->password_length,
|
|
vec->salt, vec->salt_length,
|
|
vec->iterations,
|
|
j, result, vec->hash_block_length)) {
|
|
printf("pbkdf2 failed, vector %d\n", i);
|
|
return -EINVAL;
|
|
}
|
|
if (memcmp(result, vec->output, j) != 0) {
|
|
printf("vector %u\n", i);
|
|
printhex(" got", result, j);
|
|
printhex("want", vec->output, j);
|
|
return -EINVAL;
|
|
}
|
|
memset(result, 0, sizeof(result));
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|