Files
cryptsetup/lib/luks2/luks2_json_format.c
Milan Broz a6f5ce8c7b Update copyright year.
And unify name copyright format.
2019-01-25 09:45:57 +01:00

309 lines
9.7 KiB
C

/*
* LUKS - Linux Unified Key Setup v2, LUKS2 header format code
*
* Copyright (C) 2015-2019 Red Hat, Inc. All rights reserved.
* Copyright (C) 2015-2019 Milan Broz
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "luks2_internal.h"
#include <uuid/uuid.h>
struct area {
uint64_t offset;
uint64_t length;
};
static size_t get_area_size(size_t keylength)
{
//FIXME: calculate this properly, for now it is AF_split_sectors
return size_round_up(keylength * 4000, 4096);
}
static size_t get_min_offset(struct luks2_hdr *hdr)
{
return 2 * hdr->hdr_size;
}
static size_t get_max_offset(struct crypt_device *cd)
{
return crypt_get_data_offset(cd) * SECTOR_SIZE;
}
int LUKS2_find_area_gap(struct crypt_device *cd, struct luks2_hdr *hdr,
size_t keylength, uint64_t *area_offset, uint64_t *area_length)
{
struct area areas[LUKS2_KEYSLOTS_MAX], sorted_areas[LUKS2_KEYSLOTS_MAX] = {};
int i, j, k, area_i;
size_t offset, length;
/* fill area offset + length table */
for (i = 0; i < LUKS2_KEYSLOTS_MAX; i++) {
if (!LUKS2_keyslot_area(hdr, i, &areas[i].offset, &areas[i].length))
continue;
areas[i].length = 0;
areas[i].offset = 0;
}
/* sort table */
k = 0; /* index in sorted table */
for (i = 0; i < LUKS2_KEYSLOTS_MAX; i++) {
offset = get_max_offset(cd) ?: UINT64_MAX;
area_i = -1;
/* search for the smallest offset in table */
for (j = 0; j < LUKS2_KEYSLOTS_MAX; j++)
if (areas[j].offset && areas[j].offset <= offset) {
area_i = j;
offset = areas[j].offset;
}
if (area_i >= 0) {
sorted_areas[k].length = areas[area_i].length;
sorted_areas[k].offset = areas[area_i].offset;
areas[area_i].length = 0;
areas[area_i].offset = 0;
k++;
}
}
/* search for the gap we can use */
offset = get_min_offset(hdr);
length = get_area_size(keylength);
for (i = 0; i < LUKS2_KEYSLOTS_MAX; i++) {
/* skip empty */
if (sorted_areas[i].offset == 0 || sorted_areas[i].length == 0)
continue;
/* enough space before the used area */
if ((offset < sorted_areas[i].offset) && ((offset + length) <= sorted_areas[i].offset))
break;
/* both offset and length are already aligned to 4096 bytes */
offset = sorted_areas[i].offset + sorted_areas[i].length;
}
if (get_max_offset(cd) && (offset + length) > get_max_offset(cd)) {
log_err(cd, _("No space for new keyslot."));
return -EINVAL;
}
log_dbg(cd, "Found area %zu -> %zu", offset, length + offset);
/*
log_dbg("Area offset min: %zu, max %zu, slots max %u",
get_min_offset(hdr), get_max_offset(cd), LUKS2_KEYSLOTS_MAX);
for (i = 0; i < LUKS2_KEYSLOTS_MAX; i++)
log_dbg("SLOT[%02i]: %-8" PRIu64 " -> %-8" PRIu64, i,
sorted_areas[i].offset,
sorted_areas[i].length + sorted_areas[i].offset);
*/
*area_offset = offset;
*area_length = length;
return 0;
}
int LUKS2_check_metadata_area_size(uint64_t metadata_size)
{
/* see LUKS2_HDR2_OFFSETS */
return (metadata_size != 0x004000 &&
metadata_size != 0x008000 && metadata_size != 0x010000 &&
metadata_size != 0x020000 && metadata_size != 0x040000 &&
metadata_size != 0x080000 && metadata_size != 0x100000 &&
metadata_size != 0x200000 && metadata_size != 0x400000);
}
int LUKS2_check_keyslots_area_size(uint64_t keyslots_size)
{
return (MISALIGNED_4K(keyslots_size) ||
keyslots_size > LUKS2_MAX_KEYSLOTS_SIZE);
}
int LUKS2_generate_hdr(
struct crypt_device *cd,
struct luks2_hdr *hdr,
const struct volume_key *vk,
const char *cipherName,
const char *cipherMode,
const char *integrity,
const char *uuid,
unsigned int sector_size, /* in bytes */
uint64_t data_offset, /* in bytes */
uint64_t align_offset, /* in bytes */
uint64_t required_alignment,
uint64_t metadata_size,
uint64_t keyslots_size)
{
struct json_object *jobj_segment, *jobj_integrity, *jobj_keyslots, *jobj_segments, *jobj_config;
char cipher[128];
uuid_t partitionUuid;
int digest;
if (!metadata_size)
metadata_size = LUKS2_HDR_16K_LEN;
hdr->hdr_size = metadata_size;
if (data_offset && data_offset < get_min_offset(hdr)) {
log_err(cd, _("Requested data offset is too small."));
return -EINVAL;
}
/* Increase keyslot size according to data offset */
if (!keyslots_size && data_offset)
keyslots_size = data_offset - get_min_offset(hdr);
/* keyslots size has to be 4 KiB aligned */
keyslots_size -= (keyslots_size % 4096);
if (keyslots_size > LUKS2_MAX_KEYSLOTS_SIZE)
keyslots_size = LUKS2_MAX_KEYSLOTS_SIZE;
if (!keyslots_size)
keyslots_size = LUKS2_DEFAULT_KEYSLOTS_SIZE;
/* Decrease keyslots_size if we have smaller data_offset */
if (data_offset && (keyslots_size + get_min_offset(hdr)) > data_offset) {
keyslots_size = data_offset - get_min_offset(hdr);
log_dbg(cd, "Decreasing keyslot area size to %" PRIu64
" bytes due to the requested data offset %"
PRIu64 " bytes.", keyslots_size, data_offset);
}
/* Data offset has priority */
if (!data_offset && required_alignment) {
data_offset = size_round_up(get_min_offset(hdr) + keyslots_size,
(size_t)required_alignment);
data_offset += align_offset;
}
log_dbg(cd, "Formatting LUKS2 with JSON metadata area %" PRIu64
" bytes and keyslots area %" PRIu64 " bytes.",
metadata_size - LUKS2_HDR_BIN_LEN, keyslots_size);
if (keyslots_size < LUKS2_DEFAULT_KEYSLOTS_SIZE)
log_std(cd, _("WARNING: keyslots area (%" PRIu64 " bytes) is very small,"
" available LUKS2 keyslot count is very limited.\n"),
keyslots_size);
hdr->seqid = 1;
hdr->version = 2;
memset(hdr->label, 0, LUKS2_LABEL_L);
strcpy(hdr->checksum_alg, "sha256");
crypt_random_get(cd, (char*)hdr->salt1, LUKS2_SALT_L, CRYPT_RND_SALT);
crypt_random_get(cd, (char*)hdr->salt2, LUKS2_SALT_L, CRYPT_RND_SALT);
if (uuid && uuid_parse(uuid, partitionUuid) == -1) {
log_err(cd, _("Wrong LUKS UUID format provided."));
return -EINVAL;
}
if (!uuid)
uuid_generate(partitionUuid);
uuid_unparse(partitionUuid, hdr->uuid);
if (*cipherMode != '\0')
snprintf(cipher, sizeof(cipher), "%s-%s", cipherName, cipherMode);
else
snprintf(cipher, sizeof(cipher), "%s", cipherName);
hdr->jobj = json_object_new_object();
jobj_keyslots = json_object_new_object();
json_object_object_add(hdr->jobj, "keyslots", jobj_keyslots);
json_object_object_add(hdr->jobj, "tokens", json_object_new_object());
jobj_segments = json_object_new_object();
json_object_object_add(hdr->jobj, "segments", jobj_segments);
json_object_object_add(hdr->jobj, "digests", json_object_new_object());
jobj_config = json_object_new_object();
json_object_object_add(hdr->jobj, "config", jobj_config);
digest = LUKS2_digest_create(cd, "pbkdf2", hdr, vk);
if (digest < 0) {
json_object_put(hdr->jobj);
hdr->jobj = NULL;
return -EINVAL;
}
if (LUKS2_digest_segment_assign(cd, hdr, CRYPT_DEFAULT_SEGMENT, digest, 1, 0) < 0) {
json_object_put(hdr->jobj);
hdr->jobj = NULL;
return -EINVAL;
}
jobj_segment = json_object_new_object();
json_object_object_add(jobj_segment, "type", json_object_new_string("crypt"));
json_object_object_add(jobj_segment, "offset", json_object_new_uint64(data_offset));
json_object_object_add(jobj_segment, "iv_tweak", json_object_new_string("0"));
json_object_object_add(jobj_segment, "size", json_object_new_string("dynamic"));
json_object_object_add(jobj_segment, "encryption", json_object_new_string(cipher));
json_object_object_add(jobj_segment, "sector_size", json_object_new_int(sector_size));
if (integrity) {
jobj_integrity = json_object_new_object();
json_object_object_add(jobj_integrity, "type", json_object_new_string(integrity));
json_object_object_add(jobj_integrity, "journal_encryption", json_object_new_string("none"));
json_object_object_add(jobj_integrity, "journal_integrity", json_object_new_string("none"));
json_object_object_add(jobj_segment, "integrity", jobj_integrity);
}
json_object_object_add_by_uint(jobj_segments, CRYPT_DEFAULT_SEGMENT, jobj_segment);
json_object_object_add(jobj_config, "json_size", json_object_new_uint64(metadata_size - LUKS2_HDR_BIN_LEN));
json_object_object_add(jobj_config, "keyslots_size", json_object_new_uint64(keyslots_size));
JSON_DBG(cd, hdr->jobj, "Header JSON:");
return 0;
}
int LUKS2_wipe_header_areas(struct crypt_device *cd,
struct luks2_hdr *hdr)
{
int r;
uint64_t offset, length;
size_t wipe_block;
/* Wipe complete header, keyslots and padding areas with zeroes. */
offset = 0;
length = LUKS2_get_data_offset(hdr) * SECTOR_SIZE;
wipe_block = 1024 * 1024;
if (LUKS2_hdr_validate(cd, hdr->jobj, hdr->hdr_size - LUKS2_HDR_BIN_LEN))
return -EINVAL;
/* On detached header wipe at least the first 4k */
if (length == 0) {
length = 4096;
wipe_block = 4096;
}
log_dbg(cd, "Wiping LUKS areas (0x%06" PRIx64 " - 0x%06" PRIx64") with zeroes.",
offset, length + offset);
r = crypt_wipe_device(cd, crypt_metadata_device(cd), CRYPT_WIPE_ZERO,
offset, length, wipe_block, NULL, NULL);
if (r < 0)
return r;
/* Wipe keyslot area */
wipe_block = 1024 * 1024;
offset = get_min_offset(hdr);
length = LUKS2_keyslots_size(hdr->jobj);
log_dbg(cd, "Wiping keyslots area (0x%06" PRIx64 " - 0x%06" PRIx64") with random data.",
offset, length + offset);
return crypt_wipe_device(cd, crypt_metadata_device(cd), CRYPT_WIPE_RANDOM,
offset, length, wipe_block, NULL, NULL);
}