Files
cryptsetup/lib/verity/verity_fec.c
Milan Broz dbd20776bc Fix dm-verity FEC calculation if stored in the same image with hashes.
FEC (Forward Error Correction) data should cover the whole data area,
hashes (Merkle tree) and optionally additional metadata (located after hash area).

Unfortunately, if FEC data is stored in the same file as hash, the calculation
wrongly used the whole file size thus overlaps with FEC area itself.
This produces unusable and too large FEC data.

(There is not a problem if FEC image is a separate image.)

This patch fixes the problem, introducing FEC blocks calculation as:

 -If hash device is in a separate image, metadata covers the whole rest of the image after hash area.
  (Unchanged behaviour.)

 -If hash and FEC device is in the image, metadata ends on the FEC area offset.

This should probably fix several issues reported with FEC wrong calculations.

Fixes: #554
2021-02-26 00:16:05 +01:00

313 lines
8.5 KiB
C

/*
* dm-verity Forward Error Correction (FEC) support
*
* Copyright (C) 2015 Google, Inc. All rights reserved.
* Copyright (C) 2017-2021 Red Hat, Inc. All rights reserved.
*
* This file is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This file is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this file; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <stdlib.h>
#include <errno.h>
#include "verity.h"
#include "internal.h"
#include "rs.h"
/* ecc parameters */
#define FEC_RSM 255
#define FEC_MIN_RSN 231
#define FEC_MAX_RSN 253
#define FEC_INPUT_DEVICES 2
/* parameters to init_rs_char */
#define FEC_PARAMS(roots) \
8, /* symbol size in bits */ \
0x11d, /* field generator polynomial coefficients */ \
0, /* first root of the generator */ \
1, /* primitive element to generate polynomial roots */ \
(roots), /* polynomial degree (number of roots) */ \
0 /* padding bytes at the front of shortened block */
struct fec_input_device {
struct device *device;
int fd;
uint64_t start;
uint64_t count;
};
struct fec_context {
uint32_t rsn;
uint32_t roots;
uint64_t size;
uint64_t blocks;
uint64_t rounds;
uint32_t block_size;
struct fec_input_device *inputs;
size_t ninputs;
};
/* computes ceil(x / y) */
static inline uint64_t FEC_div_round_up(uint64_t x, uint64_t y)
{
return (x / y) + (x % y > 0 ? 1 : 0);
}
/* returns a physical offset for the given RS offset */
static inline uint64_t FEC_interleave(struct fec_context *ctx, uint64_t offset)
{
return (offset / ctx->rsn) +
(offset % ctx->rsn) * ctx->rounds * ctx->block_size;
}
/* returns data for a byte at the specified RS offset */
static int FEC_read_interleaved(struct fec_context *ctx, uint64_t i,
void *output, size_t count)
{
size_t n;
uint64_t offset = FEC_interleave(ctx, i);
/* offsets outside input area are assumed to contain zeros */
if (offset >= ctx->size) {
memset(output, 0, count);
return 0;
}
/* find the correct input device and read from it */
for (n = 0; n < ctx->ninputs; ++n) {
if (offset >= ctx->inputs[n].count) {
offset -= ctx->inputs[n].count;
continue;
}
/* FIXME: read_lseek_blockwise candidate */
if (lseek(ctx->inputs[n].fd, ctx->inputs[n].start + offset, SEEK_SET) < 0)
return -1;
return (read_buffer(ctx->inputs[n].fd, output, count) == (ssize_t)count) ? 0 : -1;
}
/* should never be reached */
return -1;
}
/* encodes/decode inputs to/from fd */
static int FEC_process_inputs(struct crypt_device *cd,
struct crypt_params_verity *params,
struct fec_input_device *inputs,
size_t ninputs, int fd,
int decode, unsigned int *errors)
{
int r = 0;
unsigned int i;
struct fec_context ctx;
uint32_t b;
uint64_t n;
uint8_t rs_block[FEC_RSM];
uint8_t *buf = NULL;
void *rs;
/* initialize parameters */
ctx.roots = params->fec_roots;
ctx.rsn = FEC_RSM - ctx.roots;
ctx.block_size = params->data_block_size;
ctx.inputs = inputs;
ctx.ninputs = ninputs;
rs = init_rs_char(FEC_PARAMS(ctx.roots));
if (!rs) {
log_err(cd, _("Failed to allocate RS context."));
return -ENOMEM;
}
/* calculate the total area covered by error correction codes */
ctx.size = 0;
for (n = 0; n < ctx.ninputs; ++n) {
log_dbg(cd, "FEC input %s, offset %" PRIu64 " [bytes], length %" PRIu64 " [bytes]",
device_path(ctx.inputs[n].device), ctx.inputs[n].start, ctx.inputs[n].count);
ctx.size += ctx.inputs[n].count;
}
/* each byte in a data block is covered by a different code */
ctx.blocks = FEC_div_round_up(ctx.size, ctx.block_size);
ctx.rounds = FEC_div_round_up(ctx.blocks, ctx.rsn);
buf = malloc((size_t)ctx.block_size * ctx.rsn);
if (!buf) {
log_err(cd, _("Failed to allocate buffer."));
r = -ENOMEM;
goto out;
}
/* encode/decode input */
for (n = 0; n < ctx.rounds; ++n) {
for (i = 0; i < ctx.rsn; ++i) {
if (FEC_read_interleaved(&ctx, n * ctx.rsn * ctx.block_size + i,
&buf[i * ctx.block_size], ctx.block_size)) {
log_err(cd, _("Failed to read RS block %" PRIu64 " byte %d."), n, i);
r = -EIO;
goto out;
}
}
for (b = 0; b < ctx.block_size; ++b) {
for (i = 0; i < ctx.rsn; ++i)
rs_block[i] = buf[i * ctx.block_size + b];
/* decoding from parity device */
if (decode) {
if (read_buffer(fd, &rs_block[ctx.rsn], ctx.roots) < 0) {
log_err(cd, _("Failed to read parity for RS block %" PRIu64 "."), n);
r = -EIO;
goto out;
}
/* coverity[tainted_data] */
r = decode_rs_char(rs, rs_block);
if (r < 0) {
log_err(cd, _("Failed to repair parity for block %" PRIu64 "."), n);
goto out;
}
/* return number of detected errors */
if (errors)
*errors += r;
r = 0;
} else {
/* encoding and writing parity data to fec device */
encode_rs_char(rs, rs_block, &rs_block[ctx.rsn]);
if (write_buffer(fd, &rs_block[ctx.rsn], ctx.roots) < 0) {
log_err(cd, _("Failed to write parity for RS block %" PRIu64 "."), n);
r = -EIO;
goto out;
}
}
}
}
out:
free_rs_char(rs);
free(buf);
return r;
}
int VERITY_FEC_process(struct crypt_device *cd,
struct crypt_params_verity *params,
struct device *fec_device, int check_fec,
unsigned int *errors)
{
int r = -EIO, fd = -1;
struct fec_input_device inputs[FEC_INPUT_DEVICES] = {
{
.device = crypt_data_device(cd),
.fd = -1,
.start = 0,
.count = params->data_size * params->data_block_size
},{
.device = crypt_metadata_device(cd),
.fd = -1,
.start = VERITY_hash_offset_block(params) * params->data_block_size,
.count = (VERITY_FEC_blocks(cd, fec_device, params) - params->data_size) * params->data_block_size
}
};
/* validate parameters */
if (params->data_block_size != params->hash_block_size) {
log_err(cd, _("Block sizes must match for FEC."));
return -EINVAL;
}
if (params->fec_roots > FEC_RSM - FEC_MIN_RSN ||
params->fec_roots < FEC_RSM - FEC_MAX_RSN) {
log_err(cd, _("Invalid number of parity bytes."));
return -EINVAL;
}
if (!inputs[0].count || !inputs[1].count) {
log_err(cd, _("Invalid FEC segment length."));
return -EINVAL;
}
if (check_fec)
fd = open(device_path(fec_device), O_RDONLY);
else
fd = open(device_path(fec_device), O_RDWR);
if (fd == -1) {
log_err(cd, _("Cannot open device %s."), device_path(fec_device));
goto out;
}
if (lseek(fd, params->fec_area_offset, SEEK_SET) < 0) {
log_dbg(cd, "Cannot seek to requested position in FEC device.");
goto out;
}
/* input devices */
inputs[0].fd = open(device_path(inputs[0].device), O_RDONLY);
if (inputs[0].fd == -1) {
log_err(cd, _("Cannot open device %s."), device_path(inputs[0].device));
goto out;
}
inputs[1].fd = open(device_path(inputs[1].device), O_RDONLY);
if (inputs[1].fd == -1) {
log_err(cd, _("Cannot open device %s."), device_path(inputs[1].device));
goto out;
}
r = FEC_process_inputs(cd, params, inputs, FEC_INPUT_DEVICES, fd, check_fec, errors);
out:
if (inputs[0].fd != -1)
close(inputs[0].fd);
if (inputs[1].fd != -1)
close(inputs[1].fd);
if (fd != -1)
close(fd);
return r;
}
uint64_t VERITY_FEC_blocks(struct crypt_device *cd,
struct device *fec_device,
struct crypt_params_verity *params)
{
uint64_t blocks = 0;
/*
* FEC covers this data:
* | protected data | hash area | padding (optional foreign metadata) |
*
* If hash device is in a separate image, metadata covers the whole rest of the image after hash area.
* If hash and FEC device is in the image, metadata ends on the FEC area offset.
*/
if (device_is_identical(crypt_metadata_device(cd), fec_device) > 0) {
log_dbg(cd, "FEC and hash device is the same.");
blocks = params->fec_area_offset;
} else {
/* cover the entire hash device starting from hash_offset */
if (device_size(crypt_metadata_device(cd), &blocks)) {
log_err(cd, _("Failed to determine size for device %s."),
device_path(crypt_metadata_device(cd)));
return 0;
}
}
blocks /= params->data_block_size;
blocks -= VERITY_hash_offset_block(params);
/* Protected data */
blocks += params->data_size;
return blocks;
}