Files
cryptsetup/lib/bitlk/bitlk.c
Milan Broz 97a22c27dd Make crypt_load quiet if metadata is not detected.
Ths will allow automatic scan of known formats.

Errors are printed only if something is wrong with already detected metadata.

This change means that it is responsibility of the caller to print an error
message if needed.

Also fix some places without a message.

Fixes: #642
2022-05-26 10:17:32 +02:00

1415 lines
43 KiB
C

/*
* BITLK (BitLocker-compatible) volume handling
*
* Copyright (C) 2019-2022 Red Hat, Inc. All rights reserved.
* Copyright (C) 2019-2022 Milan Broz
* Copyright (C) 2019-2022 Vojtech Trefny
*
* This file is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This file is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this file; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <errno.h>
#include <string.h>
#include <uuid/uuid.h>
#include <time.h>
#include <limits.h>
#include "bitlk.h"
#include "internal.h"
#define BITLK_BOOTCODE_V1 "\xeb\x52\x90"
#define BITLK_BOOTCODE_V2 "\xeb\x58\x90"
#define BITLK_SIGNATURE "-FVE-FS-"
#define BITLK_SIGNATURE_TOGO "MSWIN4.1"
#define BITLK_HEADER_METADATA_OFFSET 160
#define BITLK_HEADER_METADATA_OFFSET_TOGO 424
/* FVE metadata header is split into two parts */
#define BITLK_FVE_METADATA_BLOCK_HEADER_LEN 64
#define BITLK_FVE_METADATA_HEADER_LEN 48
#define BITLK_FVE_METADATA_HEADERS_LEN BITLK_FVE_METADATA_BLOCK_HEADER_LEN + BITLK_FVE_METADATA_HEADER_LEN
/* total size of the FVE area (64 KiB) */
#define BITLK_FVE_METADATA_SIZE 64 * 1024
#define BITLK_ENTRY_HEADER_LEN 8
#define BITLK_VMK_HEADER_LEN 28
#define BITLK_OPEN_KEY_METADATA_LEN 12
#define BITLK_RECOVERY_KEY_LEN 55
#define BITLK_RECOVERY_PARTS 8
#define BITLK_RECOVERY_PART_LEN 6
#define BITLK_BEK_FILE_HEADER_LEN 48
#define BITLK_STARTUP_KEY_HEADER_LEN 24
#define BITLK_KDF_HASH "sha256"
#define BITLK_KDF_ITERATION_COUNT 0x100000
/* maximum number of segments for the DM device */
#define MAX_BITLK_SEGMENTS 10
/* January 1, 1970 as MS file time */
#define EPOCH_AS_FILETIME 116444736000000000
#define HUNDREDS_OF_NANOSECONDS 10000000
/* not available in older version of libuuid */
#ifndef UUID_STR_LEN
#define UUID_STR_LEN 37
#endif
/* known types of GUIDs from the BITLK superblock */
const uint8_t BITLK_GUID_NORMAL[16] = { 0x3b, 0xd6, 0x67, 0x49, 0x29, 0x2e, 0xd8, 0x4a,
0x83, 0x99, 0xf6, 0xa3, 0x39, 0xe3, 0xd0, 0x01 };
const uint8_t BITLK_GUID_EOW[16] = { 0x3b, 0x4d, 0xa8, 0x92, 0x80, 0xdd, 0x0e, 0x4d,
0x9e, 0x4e, 0xb1, 0xe3, 0x28, 0x4e, 0xae, 0xd8 };
/* taken from libfdisk gpt.c -- TODO: this is a good candidate for adding to libuuid */
struct bitlk_guid {
uint32_t time_low;
uint16_t time_mid;
uint16_t time_hi_and_version;
uint8_t clock_seq_hi;
uint8_t clock_seq_low;
uint8_t node[6];
} __attribute__ ((packed));
static void swap_guid(struct bitlk_guid *guid) {
guid->time_low = swab32(guid->time_low);
guid->time_mid = swab16(guid->time_mid);
guid->time_hi_and_version = swab16(guid->time_hi_and_version);
}
static void guid_to_string(struct bitlk_guid *guid, char *out) {
swap_guid(guid);
uuid_unparse((unsigned char *) guid, out);
}
typedef enum {
BITLK_SEGTYPE_CRYPT,
BITLK_SEGTYPE_ZERO,
} BitlkSegmentType;
struct segment {
uint64_t offset;
uint64_t length;
uint64_t iv_offset;
BitlkSegmentType type;
};
struct bitlk_signature {
uint8_t boot_code[3];
uint8_t signature[8];
uint16_t sector_size;
} __attribute__ ((packed));
struct bitlk_superblock {
struct bitlk_guid guid;
uint64_t fve_offset[3];
} __attribute__ ((packed));
struct bitlk_fve_metadata {
/* FVE metadata block header */
uint8_t signature[8];
uint16_t fve_size;
uint16_t fve_version;
uint16_t curr_state;
uint16_t next_state;
uint64_t volume_size;
uint32_t unknown2;
uint32_t volume_header_size;
uint64_t fve_offset[3];
uint64_t volume_header_offset;
/* FVE metadata header */
uint32_t metadata_size;
uint32_t metadata_version;
uint32_t metadata_header_size;
uint32_t metada_size_copy;
struct bitlk_guid guid;
uint32_t next_nonce;
uint16_t encryption;
uint16_t unknown3;
uint64_t creation_time;
} __attribute__ ((packed));
struct bitlk_entry_header_block {
uint64_t offset;
uint64_t size;
} __attribute__ ((packed));
struct bitlk_entry_vmk {
struct bitlk_guid guid;
uint8_t modified[8];
uint16_t _unknown;
uint16_t protection;
} __attribute__ ((packed));
struct bitlk_kdf_data {
char last_sha256[32];
char initial_sha256[32];
char salt[16];
uint64_t count;
};
struct bitlk_bek_header {
uint32_t metadata_size;
uint32_t metadata_version;
uint32_t metadata_header_size;
uint32_t metada_size_copy;
struct bitlk_guid guid;
uint32_t next_nonce;
uint16_t encryption;
uint16_t unknown;
uint64_t creation_time;
} __attribute__ ((packed));
static BITLKVMKProtection get_vmk_protection(uint16_t protection)
{
switch (protection) {
case 0x0000:
return BITLK_PROTECTION_CLEAR_KEY;
case 0x0100:
return BITLK_PROTECTION_TPM;
case 0x0200:
return BITLK_PROTECTION_STARTUP_KEY;
case 0x0500:
return BITLK_PROTECTION_TPM_PIN;
case 0x0800:
return BITLK_PROTECTION_RECOVERY_PASSPHRASE;
case 0x1000:
return BITLK_PROTECTION_SMART_CARD;
case 0x2000:
return BITLK_PROTECTION_PASSPHRASE;
default:
return BITLK_PROTECTION_UNKNOWN;
}
}
static const char* get_vmk_protection_string(BITLKVMKProtection protection)
{
switch (protection) {
case BITLK_PROTECTION_CLEAR_KEY:
return "VMK protected with clear key";
case BITLK_PROTECTION_TPM:
return "VMK protected with TPM";
case BITLK_PROTECTION_STARTUP_KEY:
return "VMK protected with startup key";
case BITLK_PROTECTION_TPM_PIN:
return "VMK protected with TPM and PIN";
case BITLK_PROTECTION_PASSPHRASE:
return "VMK protected with passphrase";
case BITLK_PROTECTION_RECOVERY_PASSPHRASE:
return "VMK protected with recovery passphrase";
case BITLK_PROTECTION_SMART_CARD:
return "VMK protected with smart card";
default:
return "VMK with unknown protection";
}
}
static const char* get_bitlk_type_string(BITLKEncryptionType type)
{
switch (type)
{
case BITLK_ENCRYPTION_TYPE_NORMAL:
return "normal";
case BITLK_ENCRYPTION_TYPE_EOW:
return "encrypt-on-write";
default:
return "unknown";
}
}
static uint64_t filetime_to_unixtime(uint64_t time)
{
return (time - EPOCH_AS_FILETIME) / HUNDREDS_OF_NANOSECONDS;
}
static int parse_vmk_entry(struct crypt_device *cd, uint8_t *data, int start, int end, struct bitlk_vmk **vmk)
{
uint16_t key_entry_size = 0;
uint16_t key_entry_type = 0;
uint16_t key_entry_value = 0;
size_t key_size = 0;
char *string = NULL;
const char *key = NULL;
struct volume_key *vk = NULL;
bool supported = false;
int r = 0;
/* only passphrase or recovery passphrase vmks are supported (can be used to activate) */
supported = (*vmk)->protection == BITLK_PROTECTION_PASSPHRASE ||
(*vmk)->protection == BITLK_PROTECTION_RECOVERY_PASSPHRASE ||
(*vmk)->protection == BITLK_PROTECTION_STARTUP_KEY;
while (end - start > 2) {
/* size of this entry */
memcpy(&key_entry_size, data + start, sizeof(key_entry_size));
key_entry_size = le16_to_cpu(key_entry_size);
if (key_entry_size == 0)
break;
/* type and value of this entry */
memcpy(&key_entry_type, data + start + sizeof(key_entry_size), sizeof(key_entry_type));
memcpy(&key_entry_value,
data + start + sizeof(key_entry_size) + sizeof(key_entry_type),
sizeof(key_entry_value));
key_entry_type = le16_to_cpu(key_entry_type);
key_entry_value = le16_to_cpu(key_entry_value);
if (key_entry_type != BITLK_ENTRY_TYPE_PROPERTY) {
if (supported) {
log_err(cd, _("Unexpected metadata entry type '%u' found when parsing supported Volume Master Key."), key_entry_type);
return -EINVAL;
} else {
log_dbg(cd, "Unexpected metadata entry type '%u' found when parsing unsupported VMK.", key_entry_type);
}
}
/* stretch key with salt, skip 4 B (encryption method of the stretch key) */
if (key_entry_value == BITLK_ENTRY_VALUE_STRETCH_KEY)
memcpy((*vmk)->salt,
data + start + BITLK_ENTRY_HEADER_LEN + 4,
sizeof((*vmk)->salt));
/* AES-CCM encrypted key */
else if (key_entry_value == BITLK_ENTRY_VALUE_ENCRYPTED_KEY) {
/* nonce */
memcpy((*vmk)->nonce,
data + start + BITLK_ENTRY_HEADER_LEN,
sizeof((*vmk)->nonce));
/* MAC tag */
memcpy((*vmk)->mac_tag,
data + start + BITLK_ENTRY_HEADER_LEN + BITLK_NONCE_SIZE,
sizeof((*vmk)->mac_tag));
/* AES-CCM encrypted key */
key_size = key_entry_size - (BITLK_ENTRY_HEADER_LEN + BITLK_NONCE_SIZE + BITLK_VMK_MAC_TAG_SIZE);
key = (const char *) data + start + BITLK_ENTRY_HEADER_LEN + BITLK_NONCE_SIZE + BITLK_VMK_MAC_TAG_SIZE;
vk = crypt_alloc_volume_key(key_size, key);
if (vk == NULL)
return -ENOMEM;
crypt_volume_key_add_next(&((*vmk)->vk), vk);
/* clear key for a partially decrypted volume */
} else if (key_entry_value == BITLK_ENTRY_VALUE_KEY) {
/* We currently don't want to support opening a partially decrypted
* device so we don't need to store this key.
*
* key_size = key_entry_size - (BITLK_ENTRY_HEADER_LEN + 4);
* key = (const char *) data + start + BITLK_ENTRY_HEADER_LEN + 4;
* vk = crypt_alloc_volume_key(key_size, key);
* if (vk == NULL)
* return -ENOMEM;
* crypt_volume_key_add_next(&((*vmk)->vk), vk);
*/
log_dbg(cd, "Skipping clear key metadata entry.");
/* unknown timestamps in recovery protected VMK */
} else if (key_entry_value == BITLK_ENTRY_VALUE_RECOVERY_TIME) {
;
} else if (key_entry_value == BITLK_ENTRY_VALUE_STRING) {
string = malloc((key_entry_size - BITLK_ENTRY_HEADER_LEN) * 2 + 1);
if (!string)
return -ENOMEM;
r = crypt_utf16_to_utf8(&string, CONST_CAST(char16_t *)(data + start + BITLK_ENTRY_HEADER_LEN),
key_entry_size - BITLK_ENTRY_HEADER_LEN);
if (r < 0 || !string) {
free(string);
log_err(cd, _("Invalid string found when parsing Volume Master Key."));
return -EINVAL;
} else if ((*vmk)->name != NULL) {
if (supported) {
log_err(cd, _("Unexpected string ('%s') found when parsing supported Volume Master Key."), string);
free(string);
return -EINVAL;
}
log_dbg(cd, "Unexpected string ('%s') found when parsing unsupported VMK.", string);
free(string);
string = NULL;
} else {
/* Assume that strings in VMK are the name of the VMK */
(*vmk)->name = string;
string = NULL;
}
/* no idea what this is, lets hope it's not important */
} else if (key_entry_value == BITLK_ENTRY_VALUE_USE_KEY && (*vmk)->protection == BITLK_PROTECTION_STARTUP_KEY) {
;
} else {
if (supported) {
log_err(cd, _("Unexpected metadata entry value '%u' found when parsing supported Volume Master Key."), key_entry_value);
return -EINVAL;
} else {
log_dbg(cd, "Unexpected metadata entry value '%u' found when parsing unsupported VMK.", key_entry_value);
}
}
start += key_entry_size;
}
return 0;
}
void BITLK_bitlk_fvek_free(struct bitlk_fvek *fvek)
{
if (!fvek)
return;
crypt_free_volume_key(fvek->vk);
free(fvek);
}
void BITLK_bitlk_vmk_free(struct bitlk_vmk *vmk)
{
struct bitlk_vmk *vmk_next = NULL;
while (vmk) {
if (vmk->guid)
free(vmk->guid);
if (vmk->name)
free(vmk->name);
crypt_free_volume_key(vmk->vk);
vmk_next = vmk->next;
free(vmk);
vmk = vmk_next;
}
}
void BITLK_bitlk_metadata_free(struct bitlk_metadata *metadata)
{
if (!metadata)
return;
free(metadata->guid);
if (metadata->description)
free(metadata->description);
BITLK_bitlk_vmk_free(metadata->vmks);
BITLK_bitlk_fvek_free(metadata->fvek);
}
int BITLK_read_sb(struct crypt_device *cd, struct bitlk_metadata *params)
{
int devfd;
struct device *device = crypt_metadata_device(cd);
struct bitlk_signature sig = {};
struct bitlk_superblock sb = {};
struct bitlk_fve_metadata fve = {};
struct bitlk_entry_vmk entry_vmk = {};
uint8_t *fve_entries = NULL;
uint32_t fve_metadata_size = 0;
int fve_offset = 0;
char guid_buf[UUID_STR_LEN] = {0};
uint16_t entry_size = 0;
uint16_t entry_type = 0;
int i = 0;
int r = 0;
int start = 0;
int end = 0;
size_t key_size = 0;
const char *key = NULL;
char *description = NULL;
struct bitlk_vmk *vmk = NULL;
struct bitlk_vmk *vmk_p = params->vmks;
devfd = device_open(cd, crypt_data_device(cd), O_RDONLY);
if (devfd < 0) {
r = -EINVAL;
goto out;
}
/* read and check the signature */
if (read_lseek_blockwise(devfd, device_block_size(cd, device),
device_alignment(device), &sig, sizeof(sig), 0) != sizeof(sig)) {
log_dbg(cd, "Failed to read BITLK signature from %s.", device_path(device));
r = -EIO;
goto out;
}
if (memcmp(sig.signature, BITLK_SIGNATURE, sizeof(sig.signature)) == 0) {
params->togo = false;
fve_offset = BITLK_HEADER_METADATA_OFFSET;
} else if (memcmp(sig.signature, BITLK_SIGNATURE_TOGO, sizeof(sig.signature)) == 0) {
params->togo = true;
fve_offset = BITLK_HEADER_METADATA_OFFSET_TOGO;
} else {
log_dbg(cd, "Invalid or unknown signature for BITLK device.");
r = -EINVAL;
goto out;
}
if (memcmp(sig.boot_code, BITLK_BOOTCODE_V1, sizeof(sig.boot_code)) == 0) {
log_err(cd, _("BITLK version 1 is currently not supported."));
r = -ENOTSUP;
goto out;
} else if (memcmp(sig.boot_code, BITLK_BOOTCODE_V2, sizeof(sig.boot_code)) == 0)
;
else {
log_err(cd, _("Invalid or unknown boot signature for BITLK device."));
r = -EINVAL;
goto out;
}
params->sector_size = le16_to_cpu(sig.sector_size);
if (params->sector_size == 0) {
log_dbg(cd, "Got sector size 0, assuming 512.");
params->sector_size = SECTOR_SIZE;
}
if (!(params->sector_size == 512 || params->sector_size == 4096)) {
log_err(cd, _("Unsupported sector size %" PRIu16 "."), params->sector_size);
r = -EINVAL;
goto out;
}
/* read GUID and FVE metadata offsets */
if (read_lseek_blockwise(devfd, device_block_size(cd, device),
device_alignment(device), &sb, sizeof(sb), fve_offset) != sizeof(sb)) {
log_err(cd, _("Failed to read BITLK header from %s."), device_path(device));
r = -EINVAL;
goto out;
}
/* get encryption "type" based on the GUID from BITLK superblock */
if (memcmp(&sb.guid, BITLK_GUID_NORMAL, 16) == 0)
params->type = BITLK_ENCRYPTION_TYPE_NORMAL;
else if (memcmp(&sb.guid, BITLK_GUID_EOW, 16) == 0)
params->type = BITLK_ENCRYPTION_TYPE_EOW;
else
params->type = BITLK_ENCRYPTION_TYPE_UNKNOWN;
log_dbg(cd, "BITLK type from GUID: %s.", get_bitlk_type_string(params->type));
for (i = 0; i < 3; i++)
params->metadata_offset[i] = le64_to_cpu(sb.fve_offset[i]);
log_dbg(cd, "Reading BITLK FVE metadata of size %zu on device %s, offset %" PRIu64 ".",
sizeof(fve), device_path(device), params->metadata_offset[0]);
/* read FVE metadata from the first metadata area */
if (read_lseek_blockwise(devfd, device_block_size(cd, device),
device_alignment(device), &fve, sizeof(fve), params->metadata_offset[0]) != sizeof(fve) ||
memcmp(fve.signature, BITLK_SIGNATURE, sizeof(fve.signature)) ||
le16_to_cpu(fve.fve_version) != 2) {
log_err(cd, _("Failed to read BITLK FVE metadata from %s."), device_path(device));
r = -EINVAL;
goto out;
}
/* check encryption state for the device */
params->state = true;
if (le16_to_cpu(fve.curr_state) != BITLK_STATE_NORMAL || le16_to_cpu(fve.next_state) != BITLK_STATE_NORMAL) {
params->state = false;
log_dbg(cd, "Unknown/unsupported state detected. Current state: %"PRIu16", next state: %"PRIu16".",
le16_to_cpu(fve.curr_state), le16_to_cpu(fve.next_state));
}
params->volume_size = le64_to_cpu(fve.volume_size);
params->metadata_version = le16_to_cpu(fve.fve_version);
fve_metadata_size = le32_to_cpu(fve.metadata_size);
switch (le16_to_cpu(fve.encryption)) {
/* AES-CBC with Elephant difuser */
case 0x8000:
params->key_size = 256;
params->cipher = "aes";
params->cipher_mode = "cbc-elephant";
break;
case 0x8001:
params->key_size = 512;
params->cipher = "aes";
params->cipher_mode = "cbc-elephant";
break;
/* AES-CBC */
case 0x8002:
params->key_size = 128;
params->cipher = "aes";
params->cipher_mode = "cbc-eboiv";
break;
case 0x8003:
params->key_size = 256;
params->cipher = "aes";
params->cipher_mode = "cbc-eboiv";
break;
/* AES-XTS */
case 0x8004:
params->key_size = 256;
params->cipher = "aes";
params->cipher_mode = "xts-plain64";
break;
case 0x8005:
params->key_size = 512;
params->cipher = "aes";
params->cipher_mode = "xts-plain64";
break;
default:
log_err(cd, _("Unknown or unsupported encryption type."));
params->key_size = 0;
params->cipher = NULL;
params->cipher_mode = NULL;
r = -ENOTSUP;
goto out;
};
/* device GUID */
guid_to_string(&fve.guid, guid_buf);
params->guid = strdup(guid_buf);
if (!params->guid) {
r = -ENOMEM;
goto out;
}
params->creation_time = filetime_to_unixtime(le64_to_cpu(fve.creation_time));
/* read and parse all FVE metadata entries */
fve_entries = malloc(fve_metadata_size - BITLK_FVE_METADATA_HEADER_LEN);
if (!fve_entries) {
r = -ENOMEM;
goto out;
}
memset(fve_entries, 0, (fve_metadata_size - BITLK_FVE_METADATA_HEADER_LEN));
log_dbg(cd, "Reading BITLK FVE metadata entries of size %" PRIu32 " on device %s, offset %" PRIu64 ".",
fve_metadata_size - BITLK_FVE_METADATA_HEADER_LEN, device_path(device),
params->metadata_offset[0] + BITLK_FVE_METADATA_HEADERS_LEN);
if (read_lseek_blockwise(devfd, device_block_size(cd, device),
device_alignment(device), fve_entries, fve_metadata_size - BITLK_FVE_METADATA_HEADER_LEN,
params->metadata_offset[0] + BITLK_FVE_METADATA_HEADERS_LEN) != (ssize_t)(fve_metadata_size - BITLK_FVE_METADATA_HEADER_LEN)) {
log_err(cd, _("Failed to read BITLK metadata entries from %s."), device_path(device));
r = -EINVAL;
goto out;
}
end = fve_metadata_size - BITLK_FVE_METADATA_HEADER_LEN;
while (end - start > 2) {
/* size of this entry */
memcpy(&entry_size, fve_entries + start, sizeof(entry_size));
entry_size = le16_to_cpu(entry_size);
if (entry_size == 0)
break;
/* type of this entry */
memcpy(&entry_type, fve_entries + start + sizeof(entry_size), sizeof(entry_type));
entry_type = le16_to_cpu(entry_type);
/* VMK */
if (entry_type == BITLK_ENTRY_TYPE_VMK) {
/* skip first four variables in the entry (entry size, type, value and version) */
memcpy(&entry_vmk,
fve_entries + start + BITLK_ENTRY_HEADER_LEN,
sizeof(entry_vmk));
vmk = malloc(sizeof(struct bitlk_vmk));
if (!vmk) {
r = -ENOMEM;
goto out;
}
memset(vmk, 0, sizeof(struct bitlk_vmk));
guid_to_string(&entry_vmk.guid, guid_buf);
vmk->guid = strdup (guid_buf);
vmk->name = NULL;
vmk->protection = get_vmk_protection(le16_to_cpu(entry_vmk.protection));
/* more data in another entry list */
r = parse_vmk_entry(cd, fve_entries,
start + BITLK_ENTRY_HEADER_LEN + BITLK_VMK_HEADER_LEN,
start + entry_size, &vmk);
if (r < 0) {
BITLK_bitlk_vmk_free(vmk);
goto out;
}
if (params->vmks == NULL)
params->vmks = vmk;
else
vmk_p->next = vmk;
vmk_p = vmk;
vmk = vmk->next;
/* FVEK */
} else if (entry_type == BITLK_ENTRY_TYPE_FVEK) {
params->fvek = malloc(sizeof(struct bitlk_fvek));
if (!params->fvek) {
r = -ENOMEM;
goto out;
}
memcpy(params->fvek->nonce,
fve_entries + start + BITLK_ENTRY_HEADER_LEN,
sizeof(params->fvek->nonce));
/* MAC tag */
memcpy(params->fvek->mac_tag,
fve_entries + start + BITLK_ENTRY_HEADER_LEN + BITLK_NONCE_SIZE,
sizeof(params->fvek->mac_tag));
/* AES-CCM encrypted key */
key_size = entry_size - (BITLK_ENTRY_HEADER_LEN + BITLK_NONCE_SIZE + BITLK_VMK_MAC_TAG_SIZE);
key = (const char *) fve_entries + start + BITLK_ENTRY_HEADER_LEN + BITLK_NONCE_SIZE + BITLK_VMK_MAC_TAG_SIZE;
params->fvek->vk = crypt_alloc_volume_key(key_size, key);
if (params->fvek->vk == NULL) {
r = -ENOMEM;
goto out;
}
/* volume header info (location and size) */
} else if (entry_type == BITLK_ENTRY_TYPE_VOLUME_HEADER) {
struct bitlk_entry_header_block entry_header;
memcpy(&entry_header,
fve_entries + start + BITLK_ENTRY_HEADER_LEN,
sizeof(entry_header));
params->volume_header_offset = le64_to_cpu(entry_header.offset);
params->volume_header_size = le64_to_cpu(entry_header.size);
/* volume description (utf-16 string) */
} else if (entry_type == BITLK_ENTRY_TYPE_DESCRIPTION) {
description = malloc((entry_size - BITLK_ENTRY_HEADER_LEN - BITLK_ENTRY_HEADER_LEN) * 2 + 1);
if (!description)
return -ENOMEM;
r = crypt_utf16_to_utf8(&description, CONST_CAST(char16_t *)(fve_entries + start + BITLK_ENTRY_HEADER_LEN),
entry_size - BITLK_ENTRY_HEADER_LEN);
if (r < 0 || !description) {
free(description);
BITLK_bitlk_vmk_free(vmk);
log_err(cd, _("Failed to convert BITLK volume description"));
goto out;
}
params->description = description;
}
start += entry_size;
}
out:
if (fve_entries)
free(fve_entries);
return r;
}
int BITLK_dump(struct crypt_device *cd, struct device *device, struct bitlk_metadata *params)
{
struct volume_key *vk_p;
struct bitlk_vmk *vmk_p;
int next_id = 0;
int i = 0;
log_std(cd, "Info for BITLK%s device %s.\n", params->togo ? " To Go" : "", device_path(device));
log_std(cd, "Version: \t%u\n", params->metadata_version);
log_std(cd, "GUID: \t%s\n", params->guid);
log_std(cd, "Sector size: \t%u [bytes]\n", params->sector_size);
log_std(cd, "Volume size: \t%" PRIu64 " [bytes]\n", params->volume_size);
log_std(cd, "Created: \t%s", ctime((time_t *)&(params->creation_time)));
log_std(cd, "Description: \t%s\n", params->description);
log_std(cd, "Cipher name: \t%s\n", params->cipher);
log_std(cd, "Cipher mode: \t%s\n", params->cipher_mode);
log_std(cd, "Cipher key: \t%u bits\n", params->key_size);
log_std(cd, "\n");
log_std(cd, "Keyslots:\n");
vmk_p = params->vmks;
while (vmk_p) {
log_std(cd, " %d: VMK\n", next_id);
if (vmk_p->name != NULL) {
log_std(cd, "\tName: \t%s\n", vmk_p->name);
}
log_std(cd, "\tGUID: \t%s\n", vmk_p->guid);
log_std(cd, "\tProtection: \t%s\n", get_vmk_protection_string (vmk_p->protection));
log_std(cd, "\tSalt: \t");
crypt_log_hex(cd, (const char *) vmk_p->salt, 16, "", 0, NULL);
log_std(cd, "\n");
vk_p = vmk_p->vk;
while (vk_p) {
log_std(cd, "\tKey data size:\t%zu [bytes]\n", vk_p->keylength);
vk_p = vk_p->next;
}
vmk_p = vmk_p->next;
next_id++;
}
log_std(cd, " %d: FVEK\n", next_id);
log_std(cd, "\tKey data size:\t%zu [bytes]\n", params->fvek->vk->keylength);
log_std(cd, "\n");
log_std(cd, "Metadata segments:\n");
for (i = 0; i < 3; i++) {
log_std(cd, " %d: FVE metadata area\n", i);
log_std(cd, "\tOffset: \t%" PRIu64 " [bytes]\n", params->metadata_offset[i]);
log_std(cd, "\tSize: \t%d [bytes]\n", BITLK_FVE_METADATA_SIZE);
}
log_std(cd, " %d: Volume header\n", i);
log_std(cd, "\tOffset: \t%" PRIu64 " [bytes]\n", params->volume_header_offset);
log_std(cd, "\tSize: \t%" PRIu64 " [bytes]\n", params->volume_header_size);
log_std(cd, "\tCipher: \t%s-%s\n", params->cipher, params->cipher_mode);
return 0;
}
/* check if given passphrase can be a recovery key (has right format) and convert it */
static int get_recovery_key(struct crypt_device *cd,
const char *password,
size_t passwordLen,
struct volume_key **rc_key)
{
unsigned int i, j = 0;
uint16_t parts[BITLK_RECOVERY_PARTS] = {0};
char part_str[BITLK_RECOVERY_PART_LEN + 1] = {0};
long part_num = 0;
/* check the passphrase it should be:
- 55 characters
- 8 groups of 6 divided by '-'
- each part is a number dividable by 11
*/
if (passwordLen != BITLK_RECOVERY_KEY_LEN) {
if (passwordLen == BITLK_RECOVERY_KEY_LEN + 1 && password[passwordLen - 1] == '\n') {
/* looks like a recovery key with an extra newline, possibly from a key file */
passwordLen--;
log_dbg(cd, "Possible extra EOL stripped from the recovery key.");
} else
return 0;
}
for (i = BITLK_RECOVERY_PART_LEN; i < passwordLen; i += BITLK_RECOVERY_PART_LEN + 1) {
if (password[i] != '-')
return 0;
}
for (i = 0, j = 0; i < passwordLen; i += BITLK_RECOVERY_PART_LEN + 1, j++) {
strncpy(part_str, password + i, BITLK_RECOVERY_PART_LEN);
errno = 0;
part_num = strtol(part_str, NULL, 10);
if ((errno == ERANGE && (part_num == LONG_MAX || part_num == LONG_MIN)) ||
(errno != 0 && part_num == 0))
return -errno;
if (part_num % 11 != 0)
return 0;
parts[j] = cpu_to_le16(part_num / 11);
}
*rc_key = crypt_alloc_volume_key(16, (const char*) parts);
if (*rc_key == NULL)
return -ENOMEM;
return 0;
}
static int parse_external_key_entry(struct crypt_device *cd,
const char *data,
int start,
int end,
struct volume_key **vk,
const struct bitlk_metadata *params)
{
uint16_t key_entry_size = 0;
uint16_t key_entry_type = 0;
uint16_t key_entry_value = 0;
size_t key_size = 0;
const char *key = NULL;
struct bitlk_guid guid;
char guid_buf[UUID_STR_LEN] = {0};
while (end - start > 2) {
/* size of this entry */
memcpy(&key_entry_size, data + start, sizeof(key_entry_size));
key_entry_size = le16_to_cpu(key_entry_size);
if (key_entry_size == 0)
break;
/* type and value of this entry */
memcpy(&key_entry_type, data + start + sizeof(key_entry_size), sizeof(key_entry_type));
memcpy(&key_entry_value,
data + start + sizeof(key_entry_size) + sizeof(key_entry_type),
sizeof(key_entry_value));
key_entry_type = le16_to_cpu(key_entry_type);
key_entry_value = le16_to_cpu(key_entry_value);
if (key_entry_type != BITLK_ENTRY_TYPE_PROPERTY && key_entry_type != BITLK_ENTRY_TYPE_VOLUME_GUID) {
log_err(cd, _("Unexpected metadata entry type '%u' found when parsing external key."), key_entry_type);
return -EINVAL;
}
if (key_entry_value == BITLK_ENTRY_VALUE_KEY) {
key_size = key_entry_size - (BITLK_ENTRY_HEADER_LEN + 4);
key = (const char *) data + start + BITLK_ENTRY_HEADER_LEN + 4;
*vk = crypt_alloc_volume_key(key_size, key);
if (*vk == NULL)
return -ENOMEM;
return 0;
/* optional "ExternalKey" string, we can safely ignore it */
} else if (key_entry_value == BITLK_ENTRY_VALUE_STRING)
;
/* GUID of the BitLocker device we are trying to open with this key */
else if (key_entry_value == BITLK_ENTRY_VALUE_GUID) {
memcpy(&guid, data + start + BITLK_ENTRY_HEADER_LEN, sizeof(struct bitlk_guid));
guid_to_string(&guid, guid_buf);
if (strcmp(guid_buf, params->guid) != 0) {
log_err(cd, _("BEK file GUID '%s' does not match GUID of the volume."), guid_buf);
return -EINVAL;
}
} else {
log_err(cd, _("Unexpected metadata entry value '%u' found when parsing external key."), key_entry_value);
return -EINVAL;
}
start += key_entry_size;
}
/* if we got here we failed to parse the metadata */
return -EINVAL;
}
/* check if given passphrase can be a startup key (has right format) and convert it */
static int get_startup_key(struct crypt_device *cd,
const char *password,
size_t passwordLen,
const struct bitlk_vmk *vmk,
struct volume_key **su_key,
const struct bitlk_metadata *params)
{
struct bitlk_bek_header bek_header = {0};
char guid_buf[UUID_STR_LEN] = {0};
uint16_t key_entry_size = 0;
uint16_t key_entry_type = 0;
uint16_t key_entry_value = 0;
if (passwordLen < BITLK_BEK_FILE_HEADER_LEN)
return -EPERM;
memcpy(&bek_header, password, BITLK_BEK_FILE_HEADER_LEN);
/* metadata should contain GUID of the VMK this startup key is used for */
guid_to_string(&bek_header.guid, guid_buf);
if (strcmp(guid_buf, vmk->guid) == 0)
log_dbg(cd, "Found matching startup key for VMK %s", vmk->guid);
else
return -EPERM;
if (bek_header.metadata_version != 1) {
log_err(cd, _("Unsupported BEK metadata version %" PRIu32), bek_header.metadata_version);
return -ENOTSUP;
}
if (bek_header.metadata_size != passwordLen) {
log_err(cd, _("Unexpected BEK metadata size %" PRIu32 " does not match BEK file length"), bek_header.metadata_size);
return -EINVAL;
}
/* we are expecting exactly one metadata entry starting immediately after the header */
memcpy(&key_entry_size, password + BITLK_BEK_FILE_HEADER_LEN, sizeof(key_entry_size));
key_entry_size = le16_to_cpu(key_entry_size);
if (key_entry_size < BITLK_ENTRY_HEADER_LEN) {
log_dbg(cd, "Unexpected metadata entry size %" PRIu16 " when parsing BEK file", key_entry_size);
return -EINVAL;
}
/* type and value of this entry */
memcpy(&key_entry_type, password + BITLK_BEK_FILE_HEADER_LEN + sizeof(key_entry_size), sizeof(key_entry_type));
memcpy(&key_entry_value,
password + BITLK_BEK_FILE_HEADER_LEN + sizeof(key_entry_size) + sizeof(key_entry_type),
sizeof(key_entry_value));
key_entry_type = le16_to_cpu(key_entry_type);
key_entry_value = le16_to_cpu(key_entry_value);
if (key_entry_type == BITLK_ENTRY_TYPE_STARTUP_KEY && key_entry_value == BITLK_ENTRY_VALUE_EXTERNAL_KEY) {
return parse_external_key_entry(cd, password,
BITLK_BEK_FILE_HEADER_LEN + BITLK_ENTRY_HEADER_LEN + BITLK_STARTUP_KEY_HEADER_LEN,
passwordLen, su_key, params);
} else {
log_err(cd, _("Unexpected metadata entry found when parsing startup key."));
log_dbg(cd, "Entry type: %u, entry value: %u", key_entry_type, key_entry_value);
return -EINVAL;
}
}
static int bitlk_kdf(struct crypt_device *cd,
const char *password,
size_t passwordLen,
bool recovery,
const uint8_t *salt,
struct volume_key **vk)
{
struct bitlk_kdf_data kdf = {};
struct crypt_hash *hd = NULL;
int len = 0;
char16_t *utf16Password = NULL;
int i = 0;
int r = 0;
memcpy(kdf.salt, salt, 16);
r = crypt_hash_init(&hd, BITLK_KDF_HASH);
if (r < 0)
return r;
len = crypt_hash_size(BITLK_KDF_HASH);
if (len < 0) {
crypt_hash_destroy(hd);
return len;
}
if (!recovery) {
/* passphrase: convert to UTF-16 first, then sha256(sha256(pw)) */
utf16Password = crypt_safe_alloc(sizeof(char16_t) * (passwordLen + 1));
if (!utf16Password) {
r = -ENOMEM;
goto out;
}
r = crypt_utf8_to_utf16(&utf16Password, CONST_CAST(char*)password, passwordLen);
if (r < 0)
goto out;
crypt_hash_write(hd, (char*)utf16Password, passwordLen * 2);
r = crypt_hash_final(hd, kdf.initial_sha256, len);
if (r < 0)
goto out;
crypt_hash_write(hd, kdf.initial_sha256, len);
r = crypt_hash_final(hd, kdf.initial_sha256, len);
if (r < 0)
goto out;
} else {
/* recovery passphrase: already converted in #get_recovery_key, now just sha256(rpw) */
crypt_hash_write(hd, password, passwordLen);
r = crypt_hash_final(hd, kdf.initial_sha256, len);
if (r < 0)
goto out;
}
for (i = 0; i < BITLK_KDF_ITERATION_COUNT; i++) {
crypt_hash_write(hd, (const char*) &kdf, sizeof(kdf));
r = crypt_hash_final(hd, kdf.last_sha256, len);
if (r < 0)
goto out;
kdf.count = cpu_to_le64(le64_to_cpu(kdf.count) + 1);
}
*vk = crypt_alloc_volume_key(len, kdf.last_sha256);
out:
crypt_safe_free(utf16Password);
if (hd)
crypt_hash_destroy(hd);
return r;
}
static int decrypt_key(struct crypt_device *cd,
struct volume_key **vk,
struct volume_key *enc_key,
struct volume_key *key,
const uint8_t *tag, size_t tag_size,
const uint8_t *iv, size_t iv_size,
bool is_fvek)
{
char *outbuf;
int r;
uint16_t key_size = 0;
outbuf = crypt_safe_alloc(enc_key->keylength);
if (!outbuf)
return -ENOMEM;
r = crypt_bitlk_decrypt_key(key->key, key->keylength, enc_key->key, outbuf, enc_key->keylength,
(const char*)iv, iv_size, (const char*)tag, tag_size);
if (r < 0) {
if (r == -ENOTSUP)
log_err(cd, _("This operation is not supported."));
goto out;
}
/* key_data has it's size as part of the metadata */
memcpy(&key_size, outbuf, 2);
key_size = le16_to_cpu(key_size);
if (enc_key->keylength != key_size) {
log_err(cd, _("Unexpected key data size."));
log_dbg(cd, "Expected key data size: %zu, got %" PRIu16 "", enc_key->keylength, key_size);
r = -EINVAL;
goto out;
}
if (is_fvek && strcmp(crypt_get_cipher_mode(cd), "cbc-elephant") == 0 &&
crypt_get_volume_key_size(cd) == 32) {
/* 128bit AES-CBC with Elephant -- key size is 256 bit (2 keys) but key data is 512 bits,
data: 16B CBC key, 16B empty, 16B elephant key, 16B empty */
memcpy(outbuf + 16 + BITLK_OPEN_KEY_METADATA_LEN,
outbuf + 2 * 16 + BITLK_OPEN_KEY_METADATA_LEN, 16);
key_size = 32 + BITLK_OPEN_KEY_METADATA_LEN;
}
*vk = crypt_alloc_volume_key(key_size - BITLK_OPEN_KEY_METADATA_LEN,
(const char *)(outbuf + BITLK_OPEN_KEY_METADATA_LEN));
r = *vk ? 0 : -ENOMEM;
out:
crypt_safe_free(outbuf);
return r;
}
int BITLK_get_volume_key(struct crypt_device *cd,
const char *password,
size_t passwordLen,
const struct bitlk_metadata *params,
struct volume_key **open_fvek_key)
{
int r = 0;
struct volume_key *open_vmk_key = NULL;
struct volume_key *vmk_dec_key = NULL;
struct volume_key *recovery_key = NULL;
const struct bitlk_vmk *next_vmk = NULL;
next_vmk = params->vmks;
while (next_vmk) {
if (next_vmk->protection == BITLK_PROTECTION_PASSPHRASE) {
r = bitlk_kdf(cd, password, passwordLen, false, next_vmk->salt, &vmk_dec_key);
if (r) {
/* something wrong happened, but we still want to check other key slots */
next_vmk = next_vmk->next;
continue;
}
} else if (next_vmk->protection == BITLK_PROTECTION_RECOVERY_PASSPHRASE) {
r = get_recovery_key(cd, password, passwordLen, &recovery_key);
if (r) {
/* something wrong happened, but we still want to check other key slots */
next_vmk = next_vmk->next;
continue;
}
if (recovery_key == NULL) {
/* r = 0 but no key -> given passphrase is not a recovery passphrase */
r = -EPERM;
next_vmk = next_vmk->next;
continue;
}
log_dbg(cd, "Trying to use given password as a recovery key.");
r = bitlk_kdf(cd, recovery_key->key, recovery_key->keylength,
true, next_vmk->salt, &vmk_dec_key);
crypt_free_volume_key(recovery_key);
if (r)
return r;
} else if (next_vmk->protection == BITLK_PROTECTION_STARTUP_KEY) {
r = get_startup_key(cd, password, passwordLen, next_vmk, &vmk_dec_key, params);
if (r) {
next_vmk = next_vmk->next;
continue;
}
log_dbg(cd, "Trying to use external key found in provided password.");
} else {
/* only passphrase, recovery passphrase and startup key VMKs supported right now */
log_dbg(cd, "Skipping %s", get_vmk_protection_string(next_vmk->protection));
next_vmk = next_vmk->next;
if (r == 0)
/* we need to set error code in case we have only unsupported VMKs */
r = -ENOTSUP;
continue;
}
log_dbg(cd, "Trying to decrypt %s.", get_vmk_protection_string(next_vmk->protection));
r = decrypt_key(cd, &open_vmk_key, next_vmk->vk, vmk_dec_key,
next_vmk->mac_tag, BITLK_VMK_MAC_TAG_SIZE,
next_vmk->nonce, BITLK_NONCE_SIZE, false);
if (r < 0) {
log_dbg(cd, "Failed to decrypt VMK using provided passphrase.");
crypt_free_volume_key(vmk_dec_key);
if (r == -ENOTSUP)
return r;
next_vmk = next_vmk->next;
continue;
}
crypt_free_volume_key(vmk_dec_key);
r = decrypt_key(cd, open_fvek_key, params->fvek->vk, open_vmk_key,
params->fvek->mac_tag, BITLK_VMK_MAC_TAG_SIZE,
params->fvek->nonce, BITLK_NONCE_SIZE, true);
if (r < 0) {
log_dbg(cd, "Failed to decrypt FVEK using VMK.");
crypt_free_volume_key(open_vmk_key);
if (r == -ENOTSUP)
return r;
} else {
crypt_free_volume_key(open_vmk_key);
break;
}
next_vmk = next_vmk->next;
}
if (r) {
log_dbg(cd, "No more VMKs to try.");
return r;
}
return 0;
}
static int _activate_check(struct crypt_device *cd,
const struct bitlk_metadata *params)
{
const struct bitlk_vmk *next_vmk = NULL;
if (!params->state) {
log_err(cd, _("This BITLK device is in an unsupported state and cannot be activated."));
return -ENOTSUP;
}
if (params->type != BITLK_ENCRYPTION_TYPE_NORMAL) {
log_err(cd, _("BITLK devices with type '%s' cannot be activated."), get_bitlk_type_string(params->type));
return -ENOTSUP;
}
next_vmk = params->vmks;
while (next_vmk) {
if (next_vmk->protection == BITLK_PROTECTION_CLEAR_KEY) {
log_err(cd, _("Activation of partially decrypted BITLK device is not supported."));
return -ENOTSUP;
}
next_vmk = next_vmk->next;
}
return 0;
}
static int _activate(struct crypt_device *cd,
const char *name,
struct volume_key *open_fvek_key,
const struct bitlk_metadata *params,
uint32_t flags)
{
int r = 0;
int i = 0;
int j = 0;
int min = 0;
int num_segments = 0;
struct crypt_dm_active_device dmd = {
.flags = flags,
};
struct dm_target *next_segment = NULL;
struct segment segments[MAX_BITLK_SEGMENTS] = {};
struct segment temp;
uint64_t next_start = 0;
uint64_t next_end = 0;
uint64_t last_segment = 0;
uint32_t dmt_flags = 0;
r = _activate_check(cd, params);
if (r)
return r;
r = device_block_adjust(cd, crypt_data_device(cd), DEV_EXCL,
0, &dmd.size, &dmd.flags);
if (r)
return r;
if (dmd.size * SECTOR_SIZE != params->volume_size)
log_std(cd, _("WARNING: BitLocker volume size %" PRIu64 " does not match the underlying device size %" PRIu64 ""),
params->volume_size,
dmd.size * SECTOR_SIZE);
/* there will be always 4 dm-zero segments: 3x metadata, 1x FS header */
for (i = 0; i < 3; i++) {
segments[num_segments].offset = params->metadata_offset[i] / SECTOR_SIZE;
segments[num_segments].length = BITLK_FVE_METADATA_SIZE / SECTOR_SIZE;
segments[num_segments].iv_offset = 0;
segments[num_segments].type = BITLK_SEGTYPE_ZERO;
num_segments++;
}
segments[num_segments].offset = params->volume_header_offset / SECTOR_SIZE;
segments[num_segments].length = params->volume_header_size / SECTOR_SIZE;
segments[num_segments].iv_offset = 0;
segments[num_segments].type = BITLK_SEGTYPE_ZERO;
num_segments++;
/* filesystem header (moved from the special location) */
segments[num_segments].offset = 0;
segments[num_segments].length = params->volume_header_size / SECTOR_SIZE;
segments[num_segments].iv_offset = params->volume_header_offset / SECTOR_SIZE;
segments[num_segments].type = BITLK_SEGTYPE_CRYPT;
num_segments++;
/* now fill gaps between the dm-zero segments with dm-crypt */
last_segment = params->volume_header_size / SECTOR_SIZE;
while (true) {
next_start = dmd.size;
next_end = dmd.size;
/* start of the next segment: end of the first existing segment after the last added */
for (i = 0; i < num_segments; i++)
if (segments[i].offset + segments[i].length < next_start && segments[i].offset + segments[i].length >= last_segment)
next_start = segments[i].offset + segments[i].length;
/* end of the next segment: start of the next segment after start we found above */
for (i = 0; i < num_segments; i++)
if (segments[i].offset < next_end && segments[i].offset >= next_start)
next_end = segments[i].offset;
/* two zero segments next to each other, just bump the last_segment
so the algorithm moves */
if (next_end - next_start == 0) {
last_segment = next_end + 1;
continue;
}
segments[num_segments].offset = next_start;
segments[num_segments].length = next_end - next_start;
segments[num_segments].iv_offset = next_start;
segments[num_segments].type = BITLK_SEGTYPE_CRYPT;
last_segment = next_end;
num_segments++;
if (next_end == dmd.size)
break;
if (num_segments == 10) {
log_dbg(cd, "Failed to calculate number of dm-crypt segments for open.");
r = -EINVAL;
goto out;
}
}
/* device mapper needs the segment sorted */
for (i = 0; i < num_segments - 1; i++) {
min = i;
for (j = i + 1; j < num_segments; j++)
if (segments[j].offset < segments[min].offset)
min = j;
if (min != i) {
temp.offset = segments[min].offset;
temp.length = segments[min].length;
temp.iv_offset = segments[min].iv_offset;
temp.type = segments[min].type;
segments[min].offset = segments[i].offset;
segments[min].length = segments[i].length;
segments[min].iv_offset = segments[i].iv_offset;
segments[min].type = segments[i].type;
segments[i].offset = temp.offset;
segments[i].length = temp.length;
segments[i].iv_offset = temp.iv_offset;
segments[i].type = temp.type;
}
}
if (params->sector_size != SECTOR_SIZE)
dmd.flags |= CRYPT_ACTIVATE_IV_LARGE_SECTORS;
r = dm_targets_allocate(&dmd.segment, num_segments);
if (r)
goto out;
next_segment = &dmd.segment;
for (i = 0; i < num_segments; i++) {
if (segments[i].type == BITLK_SEGTYPE_ZERO)
r = dm_zero_target_set(next_segment,
segments[i].offset,
segments[i].length);
else if (segments[i].type == BITLK_SEGTYPE_CRYPT)
r = dm_crypt_target_set(next_segment,
segments[i].offset,
segments[i].length,
crypt_data_device(cd),
open_fvek_key,
crypt_get_cipher_spec(cd),
segments[i].iv_offset,
segments[i].iv_offset,
NULL, 0,
params->sector_size);
if (r)
goto out;
next_segment = next_segment->next;
}
log_dbg(cd, "Trying to activate BITLK on device %s%s%s.",
device_path(crypt_data_device(cd)), name ? " with name " :"", name ?: "");
r = dm_create_device(cd, name, CRYPT_BITLK, &dmd);
if (r < 0) {
dm_flags(cd, DM_CRYPT, &dmt_flags);
if (!strcmp(params->cipher_mode, "cbc-eboiv") && !(dmt_flags & DM_BITLK_EBOIV_SUPPORTED)) {
log_err(cd, _("Cannot activate device, kernel dm-crypt is missing support for BITLK IV."));
r = -ENOTSUP;
}
if (!strcmp(params->cipher_mode, "cbc-elephant") && !(dmt_flags & DM_BITLK_ELEPHANT_SUPPORTED)) {
log_err(cd, _("Cannot activate device, kernel dm-crypt is missing support for BITLK Elephant diffuser."));
r = -ENOTSUP;
}
if ((dmd.flags & CRYPT_ACTIVATE_IV_LARGE_SECTORS) && !(dmt_flags & DM_SECTOR_SIZE_SUPPORTED)) {
log_err(cd, _("Cannot activate device, kernel dm-crypt is missing support for large sector size."));
r = -ENOTSUP;
}
if (dm_flags(cd, DM_ZERO, &dmt_flags) < 0) {
log_err(cd, _("Cannot activate device, kernel dm-zero module is missing."));
r = -ENOTSUP;
}
}
out:
dm_targets_free(cd, &dmd);
return r;
}
int BITLK_activate_by_passphrase(struct crypt_device *cd,
const char *name,
const char *password,
size_t passwordLen,
const struct bitlk_metadata *params,
uint32_t flags)
{
int r = 0;
struct volume_key *open_fvek_key = NULL;
r = _activate_check(cd, params);
if (r)
return r;
r = BITLK_get_volume_key(cd, password, passwordLen, params, &open_fvek_key);
if (r < 0)
goto out;
/* Password verify only */
if (!name)
goto out;
r = _activate(cd, name, open_fvek_key, params, flags);
out:
crypt_free_volume_key(open_fvek_key);
return r;
}
int BITLK_activate_by_volume_key(struct crypt_device *cd,
const char *name,
const char *volume_key,
size_t volume_key_size,
const struct bitlk_metadata *params,
uint32_t flags)
{
int r = 0;
struct volume_key *open_fvek_key = NULL;
r = _activate_check(cd, params);
if (r)
return r;
open_fvek_key = crypt_alloc_volume_key(volume_key_size, volume_key);
if (!open_fvek_key)
return -ENOMEM;
r = _activate(cd, name, open_fvek_key, params, flags);
crypt_free_volume_key(open_fvek_key);
return r;
}