mirror of
https://gitlab.com/cryptsetup/cryptsetup.git
synced 2025-12-05 16:00:05 +01:00
The PBKDF2 benchmark heavily depends on exported volume key length, so we either have to remeber benchmarked length or just run test always. For other KDFs the dependence on generated key length is negligible, so we can cache benchmark.
350 lines
8.6 KiB
C
350 lines
8.6 KiB
C
/*
|
|
* libcryptsetup - cryptsetup library, cipher benchmark
|
|
*
|
|
* Copyright (C) 2012-2018, Red Hat, Inc. All rights reserved.
|
|
* Copyright (C) 2012-2018, Milan Broz
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <errno.h>
|
|
#include <time.h>
|
|
|
|
#include "internal.h"
|
|
|
|
/*
|
|
* This is not simulating storage, so using disk block causes extreme overhead.
|
|
* Let's use some fixed block size where results are more reliable...
|
|
*/
|
|
#define CIPHER_BLOCK_BYTES 65536
|
|
|
|
/*
|
|
* If the measured value is lower, encrypted buffer is probably too small
|
|
* and calculated values are not reliable.
|
|
*/
|
|
#define CIPHER_TIME_MIN_MS 0.001
|
|
|
|
/*
|
|
* The whole test depends on Linux kernel usermode crypto API for now.
|
|
* (The same implementations are used in dm-crypt though.)
|
|
*/
|
|
|
|
struct cipher_perf {
|
|
char name[32];
|
|
char mode[32];
|
|
char *key;
|
|
size_t key_length;
|
|
char *iv;
|
|
size_t iv_length;
|
|
size_t buffer_size;
|
|
};
|
|
|
|
static int time_ms(struct timespec *start, struct timespec *end, double *ms)
|
|
{
|
|
double start_ms, end_ms;
|
|
|
|
start_ms = start->tv_sec * 1000.0 + start->tv_nsec / (1000.0 * 1000);
|
|
end_ms = end->tv_sec * 1000.0 + end->tv_nsec / (1000.0 * 1000);
|
|
|
|
*ms = end_ms - start_ms;
|
|
return 0;
|
|
}
|
|
|
|
static int cipher_perf_one(struct cipher_perf *cp, char *buf,
|
|
size_t buf_size, int enc)
|
|
{
|
|
struct crypt_cipher *cipher = NULL;
|
|
size_t done = 0, block = CIPHER_BLOCK_BYTES;
|
|
int r;
|
|
|
|
if (buf_size < block)
|
|
block = buf_size;
|
|
|
|
r = crypt_cipher_init(&cipher, cp->name, cp->mode, cp->key, cp->key_length);
|
|
if (r < 0) {
|
|
log_dbg("Cannot initialise cipher %s, mode %s.", cp->name, cp->mode);
|
|
return r;
|
|
}
|
|
|
|
while (done < buf_size) {
|
|
if ((done + block) > buf_size)
|
|
block = buf_size - done;
|
|
|
|
if (enc)
|
|
r = crypt_cipher_encrypt(cipher, &buf[done], &buf[done],
|
|
block, cp->iv, cp->iv_length);
|
|
else
|
|
r = crypt_cipher_decrypt(cipher, &buf[done], &buf[done],
|
|
block, cp->iv, cp->iv_length);
|
|
if (r < 0)
|
|
break;
|
|
|
|
done += block;
|
|
}
|
|
|
|
crypt_cipher_destroy(cipher);
|
|
|
|
return r;
|
|
}
|
|
static int cipher_measure(struct cipher_perf *cp, char *buf,
|
|
size_t buf_size, int encrypt, double *ms)
|
|
{
|
|
struct timespec start, end;
|
|
int r;
|
|
|
|
/*
|
|
* Using getrusage would be better here but the precision
|
|
* is not adequate, so better stick with CLOCK_MONOTONIC
|
|
*/
|
|
if (clock_gettime(CLOCK_MONOTONIC, &start) < 0)
|
|
return -EINVAL;
|
|
|
|
r = cipher_perf_one(cp, buf, buf_size, encrypt);
|
|
if (r < 0)
|
|
return r;
|
|
|
|
if (clock_gettime(CLOCK_MONOTONIC, &end) < 0)
|
|
return -EINVAL;
|
|
|
|
r = time_ms(&start, &end, ms);
|
|
if (r < 0)
|
|
return r;
|
|
|
|
if (*ms < CIPHER_TIME_MIN_MS) {
|
|
log_dbg("Measured cipher runtime (%1.6f) is too low.", *ms);
|
|
return -ERANGE;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static double speed_mbs(unsigned long bytes, double ms)
|
|
{
|
|
double speed = bytes, s = ms / 1000.;
|
|
|
|
return speed / (1024 * 1024) / s;
|
|
}
|
|
|
|
static int cipher_perf(struct cipher_perf *cp,
|
|
double *encryption_mbs, double *decryption_mbs)
|
|
{
|
|
double ms_enc, ms_dec, ms;
|
|
int r, repeat_enc, repeat_dec;
|
|
void *buf = NULL;
|
|
|
|
if (posix_memalign(&buf, crypt_getpagesize(), cp->buffer_size))
|
|
return -ENOMEM;
|
|
|
|
ms_enc = 0.0;
|
|
repeat_enc = 1;
|
|
while (ms_enc < 1000.0) {
|
|
r = cipher_measure(cp, buf, cp->buffer_size, 1, &ms);
|
|
if (r < 0) {
|
|
free(buf);
|
|
return r;
|
|
}
|
|
ms_enc += ms;
|
|
repeat_enc++;
|
|
}
|
|
|
|
ms_dec = 0.0;
|
|
repeat_dec = 1;
|
|
while (ms_dec < 1000.0) {
|
|
r = cipher_measure(cp, buf, cp->buffer_size, 0, &ms);
|
|
if (r < 0) {
|
|
free(buf);
|
|
return r;
|
|
}
|
|
ms_dec += ms;
|
|
repeat_dec++;
|
|
}
|
|
|
|
free(buf);
|
|
|
|
*encryption_mbs = speed_mbs(cp->buffer_size * repeat_enc, ms_enc);
|
|
*decryption_mbs = speed_mbs(cp->buffer_size * repeat_dec, ms_dec);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int crypt_benchmark(struct crypt_device *cd,
|
|
const char *cipher,
|
|
const char *cipher_mode,
|
|
size_t volume_key_size,
|
|
size_t iv_size,
|
|
size_t buffer_size,
|
|
double *encryption_mbs,
|
|
double *decryption_mbs)
|
|
{
|
|
struct cipher_perf cp = {
|
|
.key_length = volume_key_size,
|
|
.iv_length = iv_size,
|
|
.buffer_size = buffer_size,
|
|
};
|
|
char *c;
|
|
int r;
|
|
|
|
if (!cipher || !cipher_mode || !volume_key_size || !encryption_mbs || !decryption_mbs)
|
|
return -EINVAL;
|
|
|
|
r = init_crypto(cd);
|
|
if (r < 0)
|
|
return r;
|
|
|
|
r = -ENOMEM;
|
|
if (iv_size) {
|
|
cp.iv = malloc(iv_size);
|
|
if (!cp.iv)
|
|
goto out;
|
|
crypt_random_get(cd, cp.iv, iv_size, CRYPT_RND_NORMAL);
|
|
}
|
|
|
|
cp.key = malloc(volume_key_size);
|
|
if (!cp.key)
|
|
goto out;
|
|
|
|
crypt_random_get(cd, cp.key, volume_key_size, CRYPT_RND_NORMAL);
|
|
strncpy(cp.name, cipher, sizeof(cp.name)-1);
|
|
strncpy(cp.mode, cipher_mode, sizeof(cp.mode)-1);
|
|
|
|
/* Ignore IV generator */
|
|
if ((c = strchr(cp.mode, '-')))
|
|
*c = '\0';
|
|
|
|
r = cipher_perf(&cp, encryption_mbs, decryption_mbs);
|
|
out:
|
|
free(cp.key);
|
|
free(cp.iv);
|
|
return r;
|
|
}
|
|
|
|
int crypt_benchmark_pbkdf(struct crypt_device *cd,
|
|
struct crypt_pbkdf_type *pbkdf,
|
|
const char *password,
|
|
size_t password_size,
|
|
const char *salt,
|
|
size_t salt_size,
|
|
size_t volume_key_size,
|
|
int (*progress)(uint32_t time_ms, void *usrptr),
|
|
void *usrptr)
|
|
{
|
|
int r;
|
|
const char *kdf_opt;
|
|
|
|
if (!pbkdf || (!password && password_size))
|
|
return -EINVAL;
|
|
|
|
r = init_crypto(cd);
|
|
if (r < 0)
|
|
return r;
|
|
|
|
kdf_opt = !strcmp(pbkdf->type, CRYPT_KDF_PBKDF2) ? pbkdf->hash : "";
|
|
|
|
log_dbg("Running %s(%s) benchmark.", pbkdf->type, kdf_opt);
|
|
|
|
r = crypt_pbkdf_perf(pbkdf->type, pbkdf->hash, password, password_size,
|
|
salt, salt_size, volume_key_size, pbkdf->time_ms,
|
|
pbkdf->max_memory_kb, pbkdf->parallel_threads,
|
|
&pbkdf->iterations, &pbkdf->max_memory_kb, progress, usrptr);
|
|
|
|
if (!r)
|
|
log_dbg("Benchmark returns %s(%s) %u iterations, %u memory, %u threads (for %zu-bits key).",
|
|
pbkdf->type, kdf_opt, pbkdf->iterations, pbkdf->max_memory_kb,
|
|
pbkdf->parallel_threads, volume_key_size * 8);
|
|
return r;
|
|
}
|
|
|
|
static int benchmark_callback(uint32_t time_ms, void *usrptr)
|
|
{
|
|
struct crypt_pbkdf_type *pbkdf = usrptr;
|
|
|
|
log_dbg("PBKDF benchmark: memory cost = %u, iterations = %u, "
|
|
"threads = %u (took %u ms)", pbkdf->max_memory_kb,
|
|
pbkdf->iterations, pbkdf->parallel_threads, time_ms);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Used in internal places to benchmark crypt_device context PBKDF.
|
|
* Once requested parameters are benchmarked, iterations attribute is set,
|
|
* and the benchmarked values can be reused.
|
|
* Note that memory cost can be changed after benchmark (if used).
|
|
* NOTE: You need to check that you are benchmarking for the same key size.
|
|
*/
|
|
int crypt_benchmark_pbkdf_internal(struct crypt_device *cd,
|
|
struct crypt_pbkdf_type *pbkdf,
|
|
size_t volume_key_size)
|
|
{
|
|
struct crypt_pbkdf_limits pbkdf_limits;
|
|
double PBKDF2_tmp;
|
|
uint32_t ms_tmp;
|
|
int r = -EINVAL;
|
|
|
|
r = crypt_pbkdf_get_limits(pbkdf->type, &pbkdf_limits);
|
|
if (r)
|
|
return r;
|
|
|
|
if (pbkdf->flags & CRYPT_PBKDF_NO_BENCHMARK) {
|
|
if (pbkdf->iterations) {
|
|
log_dbg("Reusing PBKDF values (no benchmark flag is set).");
|
|
return 0;
|
|
}
|
|
log_err(cd, _("PBKDF benchmark disabled but iterations not set."));
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* For PBKDF2 run benchmark always. Also note it depends on volume_key_size! */
|
|
if (!strcmp(pbkdf->type, CRYPT_KDF_PBKDF2)) {
|
|
/*
|
|
* For PBKDF2 it is enough to run benchmark for only 1 second
|
|
* and interpolate final iterations value from it.
|
|
*/
|
|
ms_tmp = pbkdf->time_ms;
|
|
pbkdf->time_ms = 1000;
|
|
pbkdf->parallel_threads = 0; /* N/A in PBKDF2 */
|
|
pbkdf->max_memory_kb = 0; /* N/A in PBKDF2 */
|
|
|
|
r = crypt_benchmark_pbkdf(cd, pbkdf, "foo", 3, "bar", 3,
|
|
volume_key_size, &benchmark_callback, pbkdf);
|
|
pbkdf->time_ms = ms_tmp;
|
|
if (r < 0) {
|
|
log_err(cd, _("Not compatible PBKDF2 options (using hash algorithm %s)."),
|
|
pbkdf->hash);
|
|
return r;
|
|
}
|
|
|
|
PBKDF2_tmp = ((double)pbkdf->iterations * pbkdf->time_ms / 1000.);
|
|
if (PBKDF2_tmp > (double)UINT32_MAX)
|
|
return -EINVAL;
|
|
pbkdf->iterations = at_least((uint32_t)PBKDF2_tmp, pbkdf_limits.min_iterations);
|
|
} else {
|
|
/* Already benchmarked */
|
|
if (pbkdf->iterations) {
|
|
log_dbg("Reusing PBKDF values.");
|
|
return 0;
|
|
}
|
|
|
|
r = crypt_benchmark_pbkdf(cd, pbkdf, "foo", 3,
|
|
"0123456789abcdef0123456789abcdef", 32,
|
|
volume_key_size, &benchmark_callback, pbkdf);
|
|
if (r < 0)
|
|
log_err(cd, _("Not compatible PBKDF options."));
|
|
}
|
|
|
|
return r;
|
|
}
|