Checking-in the new processing.opengl.geom including the linear path stroker.

This commit is contained in:
codeanticode
2012-05-15 21:40:04 +00:00
parent 6697311733
commit 4b9be83ad2
6 changed files with 2720 additions and 0 deletions

View File

@@ -0,0 +1,561 @@
/*
* Copyright 2006 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Sun designates this
* particular file as subject to the "Classpath" exception as provided
* by Sun in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*/
package processing.opengl.geom;
import processing.core.PMatrix2D;
/**
* The {@code LinePath} class allows to represent polygonal paths,
* potentially composed by several disjoint polygonal segments.
* It can be iterated by the {@link PathIterator} class including all
* of its segment types and winding rules
*
*/
public class LinePath {
/**
* The winding rule constant for specifying an even-odd rule
* for determining the interior of a path.
* The even-odd rule specifies that a point lies inside the
* path if a ray drawn in any direction from that point to
* infinity is crossed by path segments an odd number of times.
*/
public static final int WIND_EVEN_ODD = 0;
/**
* The winding rule constant for specifying a non-zero rule
* for determining the interior of a path.
* The non-zero rule specifies that a point lies inside the
* path if a ray drawn in any direction from that point to
* infinity is crossed by path segments a different number
* of times in the counter-clockwise direction than the
* clockwise direction.
*/
public static final int WIND_NON_ZERO = 1;
/**
* Starts segment at a given position.
*/
public static final byte SEG_MOVETO = 0;
/**
* Extends segment by adding a line to a given position.
*/
public static final byte SEG_LINETO = 1;
/**
* Closes segment at current position.
*/
public static final byte SEG_CLOSE = 2;
/**
* Joins path segments by extending their outside edges until they meet.
*/
public final static int JOIN_MITER = 0;
/**
* Joins path segments by rounding off the corner at a radius of half the line
* width.
*/
public final static int JOIN_ROUND = 1;
/**
* Joins path segments by connecting the outer corners of their wide outlines
* with a straight segment.
*/
public final static int JOIN_BEVEL = 2;
/**
* Ends unclosed subpaths and dash segments with no added decoration.
*/
public final static int CAP_BUTT = 0;
/**
* Ends unclosed subpaths and dash segments with a round decoration that has a
* radius equal to half of the width of the pen.
*/
public final static int CAP_ROUND = 1;
/**
* Ends unclosed subpaths and dash segments with a square projection that
* extends beyond the end of the segment to a distance equal to half of the
* line width.
*/
public final static int CAP_SQUARE = 2;
private static PMatrix2D identity = new PMatrix2D();
private static float defaultMiterlimit = 10.0f;
static final int INIT_SIZE = 20;
static final int EXPAND_MAX = 500;
protected byte[] pointTypes;
protected float[] floatCoords;
protected int numTypes;
protected int numCoords;
protected int windingRule;
/**
* Constructs a new empty single precision {@code LinePath} object with a
* default winding rule of {@link #WIND_NON_ZERO}.
*/
public LinePath() {
this(WIND_NON_ZERO, INIT_SIZE);
}
/**
* Constructs a new empty single precision {@code LinePath} object with the
* specified winding rule to control operations that require the interior of
* the path to be defined.
*
* @param rule
* the winding rule
* @see #WIND_EVEN_ODD
* @see #WIND_NON_ZERO
*/
public LinePath(int rule) {
this(rule, INIT_SIZE);
}
/**
* Constructs a new {@code LinePath} object from the given specified initial
* values. This method is only intended for internal use and should not be
* made public if the other constructors for this class are ever exposed.
*
* @param rule
* the winding rule
* @param initialTypes
* the size to make the initial array to store the path segment types
*/
public LinePath(int rule, int initialCapacity) {
setWindingRule(rule);
this.pointTypes = new byte[initialCapacity];
floatCoords = new float[initialCapacity * 2];
}
void needRoom(boolean needMove, int newCoords) {
if (needMove && numTypes == 0) {
throw new RuntimeException("missing initial moveto "
+ "in path definition");
}
int size = pointTypes.length;
if (numTypes >= size) {
int grow = size;
if (grow > EXPAND_MAX) {
grow = EXPAND_MAX;
}
pointTypes = copyOf(pointTypes, size + grow);
}
size = floatCoords.length;
if (numCoords + newCoords > size) {
int grow = size;
if (grow > EXPAND_MAX * 2) {
grow = EXPAND_MAX * 2;
}
if (grow < newCoords) {
grow = newCoords;
}
floatCoords = copyOf(floatCoords, size + grow);
}
}
/**
* Adds a point to the path by moving to the specified coordinates specified
* in float precision.
* <p>
* This method provides a single precision variant of the double precision
* {@code moveTo()} method on the base {@code LinePath} class.
*
* @param x
* the specified X coordinate
* @param y
* the specified Y coordinate
* @see LinePath#moveTo
*/
public final void moveTo(float x, float y) {
if (numTypes > 0 && pointTypes[numTypes - 1] == SEG_MOVETO) {
floatCoords[numCoords - 2] = x;
floatCoords[numCoords - 1] = y;
} else {
needRoom(false, 2);
pointTypes[numTypes++] = SEG_MOVETO;
floatCoords[numCoords++] = x;
floatCoords[numCoords++] = y;
}
}
/**
* Adds a point to the path by drawing a straight line from the current
* coordinates to the new specified coordinates specified in float precision.
* <p>
* This method provides a single precision variant of the double precision
* {@code lineTo()} method on the base {@code LinePath} class.
*
* @param x
* the specified X coordinate
* @param y
* the specified Y coordinate
* @see LinePath#lineTo
*/
public final void lineTo(float x, float y) {
needRoom(true, 2);
pointTypes[numTypes++] = SEG_LINETO;
floatCoords[numCoords++] = x;
floatCoords[numCoords++] = y;
}
/**
* The iterator for this class is not multi-threaded safe, which means that
* the {@code LinePath} class does not guarantee that modifications to the
* geometry of this {@code LinePath} object do not affect any iterations of that
* geometry that are already in process.
*/
public PathIterator getPathIterator() {
return new PathIterator(this);
}
/**
* Closes the current subpath by drawing a straight line back to the
* coordinates of the last {@code moveTo}. If the path is already closed then
* this method has no effect.
*/
public final void closePath() {
if (numTypes == 0 || pointTypes[numTypes - 1] != SEG_CLOSE) {
needRoom(false, 0);
pointTypes[numTypes++] = SEG_CLOSE;
}
}
/**
* Returns the fill style winding rule.
*
* @return an integer representing the current winding rule.
* @see #WIND_EVEN_ODD
* @see #WIND_NON_ZERO
* @see #setWindingRule
*/
public final int getWindingRule() {
return windingRule;
}
/**
* Sets the winding rule for this path to the specified value.
*
* @param rule
* an integer representing the specified winding rule
* @exception IllegalArgumentException
* if {@code rule} is not either {@link #WIND_EVEN_ODD} or
* {@link #WIND_NON_ZERO}
* @see #getWindingRule
*/
public final void setWindingRule(int rule) {
if (rule != WIND_EVEN_ODD && rule != WIND_NON_ZERO) {
throw new IllegalArgumentException("winding rule must be "
+ "WIND_EVEN_ODD or " + "WIND_NON_ZERO");
}
windingRule = rule;
}
/**
* Resets the path to empty. The append position is set back to the beginning
* of the path and all coordinates and point types are forgotten.
*/
public final void reset() {
numTypes = numCoords = 0;
}
static public class PathIterator {
float floatCoords[];
int typeIdx;
int pointIdx;
LinePath path;
static final int curvecoords[] = { 2, 2, 0 };
PathIterator(LinePath p2df) {
this.path = p2df;
this.floatCoords = p2df.floatCoords;
}
public int currentSegment(float[] coords) {
int type = path.pointTypes[typeIdx];
int numCoords = curvecoords[type];
if (numCoords > 0) {
System.arraycopy(floatCoords, pointIdx, coords, 0, numCoords);
}
return type;
}
public int currentSegment(double[] coords) {
int type = path.pointTypes[typeIdx];
int numCoords = curvecoords[type];
if (numCoords > 0) {
for (int i = 0; i < numCoords; i++) {
coords[i] = floatCoords[pointIdx + i];
}
}
return type;
}
public int getWindingRule() {
return path.getWindingRule();
}
public boolean isDone() {
return (typeIdx >= path.numTypes);
}
public void next() {
int type = path.pointTypes[typeIdx++];
pointIdx += curvecoords[type];
}
}
/////////////////////////////////////////////////////////////////////////////
//
// Stroked path methods
static public LinePath createStrokedPath(LinePath src, float weight,
int caps, int join) {
return createStrokedPath(src, weight, caps, join, defaultMiterlimit, null);
}
static public LinePath createStrokedPath(LinePath src, float weight,
int caps, int join, float miterlimit) {
return createStrokedPath(src, weight, caps, join, miterlimit, null);
}
/**
* Constructs a solid <code>LinePath</code> with the specified attributes.
*
* @param src
* the original path to be stroked
* @param weight
* the weight of the stroked path
* @param cap
* the decoration of the ends of the segments in the path
* @param join
* the decoration applied where path segments meet
* @param miterlimit
* @param transform
*
*/
static public LinePath createStrokedPath(LinePath src, float weight,
int caps, int join,
float miterlimit, PMatrix2D transform) {
final LinePath dest = new LinePath();
strokeTo(src, weight, caps, join, miterlimit, transform, new LineSink() {
public void moveTo(int x0, int y0) {
dest.moveTo(S15_16ToFloat(x0), S15_16ToFloat(y0));
}
public void lineJoin() {
}
public void lineTo(int x1, int y1) {
dest.lineTo(S15_16ToFloat(x1), S15_16ToFloat(y1));
}
public void close() {
dest.closePath();
}
public void end() {
}
});
return dest;
}
private static void strokeTo(LinePath src, float width, int caps, int join,
float miterlimit, PMatrix2D transform,
LineSink lsink) {
lsink = new LineStroker(lsink, FloatToS15_16(width), caps, join,
FloatToS15_16(miterlimit),
transform == null ? identity : transform);
PathIterator pi = src.getPathIterator();
pathTo(pi, lsink);
}
private static void pathTo(PathIterator pi, LineSink lsink) {
float coords[] = new float[2];
while (!pi.isDone()) {
switch (pi.currentSegment(coords)) {
case SEG_MOVETO:
lsink.moveTo(FloatToS15_16(coords[0]), FloatToS15_16(coords[1]));
break;
case SEG_LINETO:
lsink.lineJoin();
lsink.lineTo(FloatToS15_16(coords[0]), FloatToS15_16(coords[1]));
break;
case SEG_CLOSE:
lsink.lineJoin();
lsink.close();
break;
default:
throw new InternalError("unknown flattened segment type");
}
pi.next();
}
lsink.end();
}
/////////////////////////////////////////////////////////////////////////////
//
// Utility methods
public static float[] copyOf(float[] source, int length) {
float[] target = new float[length];
for (int i = 0; i < target.length; i++) {
if (i > source.length - 1)
target[i] = 0f;
else
target[i] = source[i];
}
return target;
}
public static byte[] copyOf(byte[] source, int length) {
byte[] target = new byte[length];
for (int i = 0; i < target.length; i++) {
if (i > source.length - 1)
target[i] = 0;
else
target[i] = source[i];
}
return target;
}
// From Ken Turkowski, _Fixed-Point Square Root_, In Graphics Gems V
public static int isqrt(int x) {
int fracbits = 16;
int root = 0;
int remHi = 0;
int remLo = x;
int count = 15 + fracbits / 2;
do {
remHi = (remHi << 2) | (remLo >>> 30); // N.B. - unsigned shift R
remLo <<= 2;
root <<= 1;
int testdiv = (root << 1) + 1;
if (remHi >= testdiv) {
remHi -= testdiv;
root++;
}
} while (count-- != 0);
return root;
}
public static long lsqrt(long x) {
int fracbits = 16;
long root = 0;
long remHi = 0;
long remLo = x;
int count = 31 + fracbits / 2;
do {
remHi = (remHi << 2) | (remLo >>> 62); // N.B. - unsigned shift R
remLo <<= 2;
root <<= 1;
long testDiv = (root << 1) + 1;
if (remHi >= testDiv) {
remHi -= testDiv;
root++;
}
} while (count-- != 0);
return root;
}
public static double hypot(double x, double y) {
return Math.sqrt(x * x + y * y);
}
public static int hypot(int x, int y) {
return (int) ((lsqrt((long) x * x + (long) y * y) + 128) >> 8);
}
public static long hypot(long x, long y) {
return (lsqrt(x * x + y * y) + 128) >> 8;
}
static int FloatToS15_16(float flt) {
flt = flt * 65536f + 0.5f;
if (flt <= -(65536f * 65536f)) {
return Integer.MIN_VALUE;
} else if (flt >= (65536f * 65536f)) {
return Integer.MAX_VALUE;
} else {
return (int) Math.floor(flt);
}
}
static float S15_16ToFloat(int fix) {
return (fix / 65536f);
}
}

View File

@@ -0,0 +1,85 @@
/*
* Copyright (c) 2007, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package processing.opengl.geom;
/**
* The <code>LineSink</code> interface accepts a series of line
* drawing commands: <code>moveTo</code>, <code>lineTo</code>,
* <code>close</code> (equivalent to a <code>lineTo</code> command
* with an argument equal to the argument of the last
* <code>moveTo</code> command), and <code>end</code>.
*
*/
public abstract class LineSink {
/**
* Moves the current drawing position to the point <code>(x0,
* y0)</code>.
*
* @param x0 the X coordinate in S15.16 format
* @param y0 the Y coordinate in S15.16 format
*/
public abstract void moveTo(int x0, int y0);
/**
* Provides a hint that the current segment should be joined to
* the following segment using an explicit miter or round join if
* required.
*
* <p> An application-generated path will generally have no need
* to contain calls to this method; they are typically introduced
* by a <code>Flattener</code> to mark segment divisions that
* appear in its input, and consumed by a <code>Stroker</code>
* that is responsible for emitting the miter or round join
* segments.
*
* <p> Other <code>LineSink</code> classes should simply pass this
* hint to their output sink as needed.
*/
public abstract void lineJoin();
/**
* Draws a line from the current drawing position to the point
* <code>(x1, y1)</code> and sets the current drawing position to
* <code>(x1, y1)</code>.
*
* @param x1 the X coordinate in S15.16 format
* @param y1 the Y coordinate in S15.16 format
*/
public abstract void lineTo(int x1, int y1);
/**
* Closes the current path by drawing a line from the current
* drawing position to the point specified by the moset recent
* <code>moveTo</code> command.
*/
public abstract void close();
/**
* Ends the current path. It may be necessary to end a path in
* order to allow end caps to be drawn.
*/
public abstract void end();
}

View File

@@ -0,0 +1,714 @@
/*
* Copyright (c) 2007, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package processing.opengl.geom;
import processing.core.PMatrix2D;
public class LineStroker extends LineSink {
LineSink output;
int lineWidth;
int capStyle;
int joinStyle;
int miterLimit;
int m00, m01;
int m10, m11;
int lineWidth2;
long scaledLineWidth2;
// For any pen offset (pen_dx, pen_dy) that does not depend on
// the line orientation, the pen should be transformed so that:
//
// pen_dx' = m00*pen_dx + m01*pen_dy
// pen_dy' = m10*pen_dx + m11*pen_dy
//
// For a round pen, this means:
//
// pen_dx(r, theta) = r*cos(theta)
// pen_dy(r, theta) = r*sin(theta)
//
// pen_dx'(r, theta) = r*(m00*cos(theta) + m01*sin(theta))
// pen_dy'(r, theta) = r*(m10*cos(theta) + m11*sin(theta))
int numPenSegments;
int[] pen_dx;
int[] pen_dy;
boolean[] penIncluded;
int[] join;
int[] offset = new int[2];
int[] reverse = new int[100];
int[] miter = new int[2];
long miterLimitSq;
int prev;
int rindex;
boolean started;
boolean lineToOrigin;
boolean joinToOrigin;
int sx0, sy0, sx1, sy1, x0, y0, x1, y1;
int mx0, my0, mx1, my1, omx, omy;
int lx0, ly0, lx1, ly1, lx0p, ly0p, px0, py0;
double m00_2_m01_2;
double m10_2_m11_2;
double m00_m10_m01_m11;
/**
* Empty constructor. <code>setOutput</code> and <code>setParameters</code>
* must be called prior to calling any other methods.
*/
public LineStroker() {
}
/**
* Constructs a <code>LineStroker</code>.
*
* @param output
* an output <code>LineSink</code>.
* @param lineWidth
* the desired line width in pixels, in S15.16 format.
* @param capStyle
* the desired end cap style, one of <code>CAP_BUTT</code>,
* <code>CAP_ROUND</code> or <code>CAP_SQUARE</code>.
* @param joinStyle
* the desired line join style, one of <code>JOIN_MITER</code>,
* <code>JOIN_ROUND</code> or <code>JOIN_BEVEL</code>.
* @param miterLimit
* the desired miter limit, in S15.16 format.
* @param transform
* a <code>Transform4</code> object indicating the transform that has
* been previously applied to all incoming coordinates. This is
* required in order to produce consistently shaped end caps and
* joins.
*/
public LineStroker(LineSink output, int lineWidth, int capStyle, int joinStyle,
int miterLimit, PMatrix2D transform) {
setOutput(output);
setParameters(lineWidth, capStyle, joinStyle, miterLimit, transform);
}
/**
* Sets the output <code>LineSink</code> of this <code>LineStroker</code>.
*
* @param output
* an output <code>LineSink</code>.
*/
public void setOutput(LineSink output) {
this.output = output;
}
/**
* Sets the parameters of this <code>LineStroker</code>.
*
* @param lineWidth
* the desired line width in pixels, in S15.16 format.
* @param capStyle
* the desired end cap style, one of <code>CAP_BUTT</code>,
* <code>CAP_ROUND</code> or <code>CAP_SQUARE</code>.
* @param joinStyle
* the desired line join style, one of <code>JOIN_MITER</code>,
* <code>JOIN_ROUND</code> or <code>JOIN_BEVEL</code>.
* @param miterLimit
* the desired miter limit, in S15.16 format.
* @param transform
* a <code>Transform4</code> object indicating the transform that has
* been previously applied to all incoming coordinates. This is
* required in order to produce consistently shaped end caps and
* joins.
*/
public void setParameters(int lineWidth, int capStyle, int joinStyle,
int miterLimit, PMatrix2D transform) {
this.m00 = LinePath.FloatToS15_16(transform.m00);
this.m01 = LinePath.FloatToS15_16(transform.m01);
this.m10 = LinePath.FloatToS15_16(transform.m10);
this.m11 = LinePath.FloatToS15_16(transform.m11);
this.lineWidth = lineWidth;
this.lineWidth2 = lineWidth >> 1;
this.scaledLineWidth2 = ((long) m00 * lineWidth2) >> 16;
this.capStyle = capStyle;
this.joinStyle = joinStyle;
this.miterLimit = miterLimit;
this.m00_2_m01_2 = (double) m00 * m00 + (double) m01 * m01;
this.m10_2_m11_2 = (double) m10 * m10 + (double) m11 * m11;
this.m00_m10_m01_m11 = (double) m00 * m10 + (double) m01 * m11;
double dm00 = m00 / 65536.0;
double dm01 = m01 / 65536.0;
double dm10 = m10 / 65536.0;
double dm11 = m11 / 65536.0;
double determinant = dm00 * dm11 - dm01 * dm10;
if (joinStyle == LinePath.JOIN_MITER) {
double limit = (miterLimit / 65536.0) * (lineWidth2 / 65536.0)
* determinant;
double limitSq = limit * limit;
this.miterLimitSq = (long) (limitSq * 65536.0 * 65536.0);
}
this.numPenSegments = (int) (3.14159f * lineWidth / 65536.0f);
if (pen_dx == null || pen_dx.length < numPenSegments) {
this.pen_dx = new int[numPenSegments];
this.pen_dy = new int[numPenSegments];
this.penIncluded = new boolean[numPenSegments];
this.join = new int[2 * numPenSegments];
}
for (int i = 0; i < numPenSegments; i++) {
double r = lineWidth / 2.0;
double theta = (double) i * 2.0 * Math.PI / numPenSegments;
double cos = Math.cos(theta);
double sin = Math.sin(theta);
pen_dx[i] = (int) (r * (dm00 * cos + dm01 * sin));
pen_dy[i] = (int) (r * (dm10 * cos + dm11 * sin));
}
prev = LinePath.SEG_CLOSE;
rindex = 0;
started = false;
lineToOrigin = false;
}
private void computeOffset(int x0, int y0, int x1, int y1, int[] m) {
long lx = (long) x1 - (long) x0;
long ly = (long) y1 - (long) y0;
int dx, dy;
if (m00 > 0 && m00 == m11 && m01 == 0 & m10 == 0) {
long ilen = LinePath.hypot(lx, ly);
if (ilen == 0) {
dx = dy = 0;
} else {
dx = (int) ((ly * scaledLineWidth2) / ilen);
dy = (int) (-(lx * scaledLineWidth2) / ilen);
}
} else {
double dlx = x1 - x0;
double dly = y1 - y0;
double det = (double) m00 * m11 - (double) m01 * m10;
int sdet = (det > 0) ? 1 : -1;
double a = dly * m00 - dlx * m10;
double b = dly * m01 - dlx * m11;
double dh = LinePath.hypot(a, b);
double div = sdet * lineWidth2 / (65536.0 * dh);
double ddx = dly * m00_2_m01_2 - dlx * m00_m10_m01_m11;
double ddy = dly * m00_m10_m01_m11 - dlx * m10_2_m11_2;
dx = (int) (ddx * div);
dy = (int) (ddy * div);
}
m[0] = dx;
m[1] = dy;
}
private void ensureCapacity(int newrindex) {
if (reverse.length < newrindex) {
int[] tmp = new int[Math.max(newrindex, 6 * reverse.length / 5)];
System.arraycopy(reverse, 0, tmp, 0, rindex);
this.reverse = tmp;
}
}
private boolean isCCW(int x0, int y0, int x1, int y1, int x2, int y2) {
int dx0 = x1 - x0;
int dy0 = y1 - y0;
int dx1 = x2 - x1;
int dy1 = y2 - y1;
return (long) dx0 * dy1 < (long) dy0 * dx1;
}
private boolean side(int x, int y, int x0, int y0, int x1, int y1) {
long lx = x;
long ly = y;
long lx0 = x0;
long ly0 = y0;
long lx1 = x1;
long ly1 = y1;
return (ly0 - ly1) * lx + (lx1 - lx0) * ly + (lx0 * ly1 - lx1 * ly0) > 0;
}
private int computeRoundJoin(int cx, int cy, int xa, int ya, int xb, int yb,
int side, boolean flip, int[] join) {
int px, py;
int ncoords = 0;
boolean centerSide;
if (side == 0) {
centerSide = side(cx, cy, xa, ya, xb, yb);
} else {
centerSide = (side == 1) ? true : false;
}
for (int i = 0; i < numPenSegments; i++) {
px = cx + pen_dx[i];
py = cy + pen_dy[i];
boolean penSide = side(px, py, xa, ya, xb, yb);
if (penSide != centerSide) {
penIncluded[i] = true;
} else {
penIncluded[i] = false;
}
}
int start = -1, end = -1;
for (int i = 0; i < numPenSegments; i++) {
if (penIncluded[i]
&& !penIncluded[(i + numPenSegments - 1) % numPenSegments]) {
start = i;
}
if (penIncluded[i] && !penIncluded[(i + 1) % numPenSegments]) {
end = i;
}
}
if (end < start) {
end += numPenSegments;
}
if (start != -1 && end != -1) {
long dxa = cx + pen_dx[start] - xa;
long dya = cy + pen_dy[start] - ya;
long dxb = cx + pen_dx[start] - xb;
long dyb = cy + pen_dy[start] - yb;
boolean rev = (dxa * dxa + dya * dya > dxb * dxb + dyb * dyb);
int i = rev ? end : start;
int incr = rev ? -1 : 1;
while (true) {
int idx = i % numPenSegments;
px = cx + pen_dx[idx];
py = cy + pen_dy[idx];
join[ncoords++] = px;
join[ncoords++] = py;
if (i == (rev ? start : end)) {
break;
}
i += incr;
}
}
return ncoords / 2;
}
private static final long ROUND_JOIN_THRESHOLD = 1000L;
private static final long ROUND_JOIN_INTERNAL_THRESHOLD = 1000000000L;
private void drawRoundJoin(int x, int y, int omx, int omy, int mx, int my,
int side, boolean flip, boolean rev, long threshold) {
if ((omx == 0 && omy == 0) || (mx == 0 && my == 0)) {
return;
}
long domx = (long) omx - mx;
long domy = (long) omy - my;
long len = domx * domx + domy * domy;
if (len < threshold) {
return;
}
if (rev) {
omx = -omx;
omy = -omy;
mx = -mx;
my = -my;
}
int bx0 = x + omx;
int by0 = y + omy;
int bx1 = x + mx;
int by1 = y + my;
int npoints = computeRoundJoin(x, y, bx0, by0, bx1, by1, side, flip, join);
for (int i = 0; i < npoints; i++) {
emitLineTo(join[2 * i], join[2 * i + 1], rev);
}
}
// Return the intersection point of the lines (ix0, iy0) -> (ix1, iy1)
// and (ix0p, iy0p) -> (ix1p, iy1p) in m[0] and m[1]
private void computeMiter(int ix0, int iy0, int ix1, int iy1, int ix0p,
int iy0p, int ix1p, int iy1p, int[] m) {
long x0 = ix0;
long y0 = iy0;
long x1 = ix1;
long y1 = iy1;
long x0p = ix0p;
long y0p = iy0p;
long x1p = ix1p;
long y1p = iy1p;
long x10 = x1 - x0;
long y10 = y1 - y0;
long x10p = x1p - x0p;
long y10p = y1p - y0p;
long den = (x10 * y10p - x10p * y10) >> 16;
if (den == 0) {
m[0] = ix0;
m[1] = iy0;
return;
}
long t = (x1p * (y0 - y0p) - x0 * y10p + x0p * (y1p - y0)) >> 16;
m[0] = (int) (x0 + (t * x10) / den);
m[1] = (int) (y0 + (t * y10) / den);
}
private void drawMiter(int px0, int py0, int x0, int y0, int x1, int y1,
int omx, int omy, int mx, int my, boolean rev) {
if (mx == omx && my == omy) {
return;
}
if (px0 == x0 && py0 == y0) {
return;
}
if (x0 == x1 && y0 == y1) {
return;
}
if (rev) {
omx = -omx;
omy = -omy;
mx = -mx;
my = -my;
}
computeMiter(px0 + omx, py0 + omy, x0 + omx, y0 + omy, x0 + mx, y0 + my, x1
+ mx, y1 + my, miter);
// Compute miter length in untransformed coordinates
long dx = (long) miter[0] - x0;
long dy = (long) miter[1] - y0;
long a = (dy * m00 - dx * m10) >> 16;
long b = (dy * m01 - dx * m11) >> 16;
long lenSq = a * a + b * b;
if (lenSq < miterLimitSq) {
emitLineTo(miter[0], miter[1], rev);
}
}
public void moveTo(int x0, int y0) {
// System.out.println("LineStroker.moveTo(" + x0/65536.0 + ", " + y0/65536.0 + ")");
if (lineToOrigin) {
// not closing the path, do the previous lineTo
lineToImpl(sx0, sy0, joinToOrigin);
lineToOrigin = false;
}
if (prev == LinePath.SEG_LINETO) {
finish();
}
this.sx0 = this.x0 = x0;
this.sy0 = this.y0 = y0;
this.rindex = 0;
this.started = false;
this.joinSegment = false;
this.prev = LinePath.SEG_MOVETO;
}
boolean joinSegment = false;
public void lineJoin() {
// System.out.println("LineStroker.lineJoin()");
this.joinSegment = true;
}
public void lineTo(int x1, int y1) {
// System.out.println("LineStroker.lineTo(" + x1/65536.0 + ", " + y1/65536.0 + ")");
if (lineToOrigin) {
if (x1 == sx0 && y1 == sy0) {
// staying in the starting point
return;
}
// not closing the path, do the previous lineTo
lineToImpl(sx0, sy0, joinToOrigin);
lineToOrigin = false;
} else if (x1 == x0 && y1 == y0) {
return;
} else if (x1 == sx0 && y1 == sy0) {
lineToOrigin = true;
joinToOrigin = joinSegment;
joinSegment = false;
return;
}
lineToImpl(x1, y1, joinSegment);
joinSegment = false;
}
private void lineToImpl(int x1, int y1, boolean joinSegment) {
computeOffset(x0, y0, x1, y1, offset);
int mx = offset[0];
int my = offset[1];
if (!started) {
emitMoveTo(x0 + mx, y0 + my);
this.sx1 = x1;
this.sy1 = y1;
this.mx0 = mx;
this.my0 = my;
started = true;
} else {
boolean ccw = isCCW(px0, py0, x0, y0, x1, y1);
if (joinSegment) {
if (joinStyle == LinePath.JOIN_MITER) {
drawMiter(px0, py0, x0, y0, x1, y1, omx, omy, mx, my, ccw);
} else if (joinStyle == LinePath.JOIN_ROUND) {
drawRoundJoin(x0, y0, omx, omy, mx, my, 0, false, ccw,
ROUND_JOIN_THRESHOLD);
}
} else {
// Draw internal joins as round
drawRoundJoin(x0, y0, omx, omy, mx, my, 0, false, ccw,
ROUND_JOIN_INTERNAL_THRESHOLD);
}
emitLineTo(x0, y0, !ccw);
}
emitLineTo(x0 + mx, y0 + my, false);
emitLineTo(x1 + mx, y1 + my, false);
emitLineTo(x0 - mx, y0 - my, true);
emitLineTo(x1 - mx, y1 - my, true);
lx0 = x1 + mx;
ly0 = y1 + my;
lx0p = x1 - mx;
ly0p = y1 - my;
lx1 = x1;
ly1 = y1;
this.omx = mx;
this.omy = my;
this.px0 = x0;
this.py0 = y0;
this.x0 = x1;
this.y0 = y1;
this.prev = LinePath.SEG_LINETO;
}
public void close() {
// System.out.println("LineStroker.close()");
if (lineToOrigin) {
// ignore the previous lineTo
lineToOrigin = false;
}
if (!started) {
finish();
return;
}
computeOffset(x0, y0, sx0, sy0, offset);
int mx = offset[0];
int my = offset[1];
// Draw penultimate join
boolean ccw = isCCW(px0, py0, x0, y0, sx0, sy0);
if (joinSegment) {
if (joinStyle == LinePath.JOIN_MITER) {
drawMiter(px0, py0, x0, y0, sx0, sy0, omx, omy, mx, my, ccw);
} else if (joinStyle == LinePath.JOIN_ROUND) {
drawRoundJoin(x0, y0, omx, omy, mx, my, 0, false, ccw,
ROUND_JOIN_THRESHOLD);
}
} else {
// Draw internal joins as round
drawRoundJoin(x0, y0, omx, omy, mx, my, 0, false, ccw,
ROUND_JOIN_INTERNAL_THRESHOLD);
}
emitLineTo(x0 + mx, y0 + my);
emitLineTo(sx0 + mx, sy0 + my);
ccw = isCCW(x0, y0, sx0, sy0, sx1, sy1);
// Draw final join on the outside
if (!ccw) {
if (joinStyle == LinePath.JOIN_MITER) {
drawMiter(x0, y0, sx0, sy0, sx1, sy1, mx, my, mx0, my0, false);
} else if (joinStyle == LinePath.JOIN_ROUND) {
drawRoundJoin(sx0, sy0, mx, my, mx0, my0, 0, false, false,
ROUND_JOIN_THRESHOLD);
}
}
emitLineTo(sx0 + mx0, sy0 + my0);
emitLineTo(sx0 - mx0, sy0 - my0); // same as reverse[0], reverse[1]
// Draw final join on the inside
if (ccw) {
if (joinStyle == LinePath.JOIN_MITER) {
drawMiter(x0, y0, sx0, sy0, sx1, sy1, -mx, -my, -mx0, -my0, false);
} else if (joinStyle == LinePath.JOIN_ROUND) {
drawRoundJoin(sx0, sy0, -mx, -my, -mx0, -my0, 0, true, false,
ROUND_JOIN_THRESHOLD);
}
}
emitLineTo(sx0 - mx, sy0 - my);
emitLineTo(x0 - mx, y0 - my);
for (int i = rindex - 2; i >= 0; i -= 2) {
emitLineTo(reverse[i], reverse[i + 1]);
}
this.x0 = this.sx0;
this.y0 = this.sy0;
this.rindex = 0;
this.started = false;
this.joinSegment = false;
this.prev = LinePath.SEG_CLOSE;
emitClose();
}
public void end() {
// System.out.println("LineStroker.end()");
if (lineToOrigin) {
// not closing the path, do the previous lineTo
lineToImpl(sx0, sy0, joinToOrigin);
lineToOrigin = false;
}
if (prev == LinePath.SEG_LINETO) {
finish();
}
output.end();
this.joinSegment = false;
this.prev = LinePath.SEG_MOVETO;
}
long lineLength(long ldx, long ldy) {
long ldet = ((long) m00 * m11 - (long) m01 * m10) >> 16;
long la = ((long) ldy * m00 - (long) ldx * m10) / ldet;
long lb = ((long) ldy * m01 - (long) ldx * m11) / ldet;
long llen = (int) LinePath.hypot(la, lb);
return llen;
}
private void finish() {
if (capStyle == LinePath.CAP_ROUND) {
drawRoundJoin(x0, y0, omx, omy, -omx, -omy, 1, false, false,
ROUND_JOIN_THRESHOLD);
} else if (capStyle == LinePath.CAP_SQUARE) {
long ldx = (long) (px0 - x0);
long ldy = (long) (py0 - y0);
long llen = lineLength(ldx, ldy);
long s = (long) lineWidth2 * 65536 / llen;
int capx = x0 - (int) (ldx * s >> 16);
int capy = y0 - (int) (ldy * s >> 16);
emitLineTo(capx + omx, capy + omy);
emitLineTo(capx - omx, capy - omy);
}
for (int i = rindex - 2; i >= 0; i -= 2) {
emitLineTo(reverse[i], reverse[i + 1]);
}
this.rindex = 0;
if (capStyle == LinePath.CAP_ROUND) {
drawRoundJoin(sx0, sy0, -mx0, -my0, mx0, my0, 1, false, false,
ROUND_JOIN_THRESHOLD);
} else if (capStyle == LinePath.CAP_SQUARE) {
long ldx = (long) (sx1 - sx0);
long ldy = (long) (sy1 - sy0);
long llen = lineLength(ldx, ldy);
long s = (long) lineWidth2 * 65536 / llen;
int capx = sx0 - (int) (ldx * s >> 16);
int capy = sy0 - (int) (ldy * s >> 16);
emitLineTo(capx - mx0, capy - my0);
emitLineTo(capx + mx0, capy + my0);
}
emitClose();
this.joinSegment = false;
}
private void emitMoveTo(int x0, int y0) {
// System.out.println("LineStroker.emitMoveTo(" + x0/65536.0 + ", " + y0/65536.0 + ")");
output.moveTo(x0, y0);
}
private void emitLineTo(int x1, int y1) {
// System.out.println("LineStroker.emitLineTo(" + x0/65536.0 + ", " + y0/65536.0 + ")");
output.lineTo(x1, y1);
}
private void emitLineTo(int x1, int y1, boolean rev) {
if (rev) {
ensureCapacity(rindex + 2);
reverse[rindex++] = x1;
reverse[rindex++] = y1;
} else {
emitLineTo(x1, y1);
}
}
private void emitClose() {
// System.out.println("LineStroker.emitClose()");
output.close();
}
}