/* -*- mode: java; c-basic-offset: 2; indent-tabs-mode: nil -*- */ /* Part of the Processing project - http://processing.org Copyright (c) 2011-12 Ben Fry and Casey Reas This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ package processing.opengl; import java.awt.BorderLayout; import java.awt.Canvas; import java.nio.Buffer; import java.nio.ByteBuffer; import java.nio.ByteOrder; import java.nio.FloatBuffer; import java.nio.IntBuffer; import java.util.Arrays; import java.util.Timer; import java.util.TimerTask; import javax.media.opengl.GL; import javax.media.opengl.GL2; import javax.media.opengl.GL2ES2; import javax.media.opengl.GLAutoDrawable; import javax.media.opengl.GLCapabilities; import javax.media.opengl.GLCapabilitiesImmutable; import javax.media.opengl.GLContext; import javax.media.opengl.GLDrawable; import javax.media.opengl.GLEventListener; import javax.media.opengl.GLException; import javax.media.opengl.GLProfile; import javax.media.opengl.awt.GLCanvas; import javax.media.opengl.glu.GLU; import javax.media.opengl.glu.GLUtessellator; import javax.media.opengl.glu.GLUtessellatorCallbackAdapter; import com.jogamp.newt.awt.NewtCanvasAWT; import com.jogamp.newt.opengl.GLWindow; import com.jogamp.opengl.util.AnimatorBase; /** * Processing-OpenGL abstraction layer. * */ public class PGL { // The two windowing toolkits available to use in JOGL: protected static final int AWT = 0; // http://jogamp.org/wiki/index.php/Using_JOGL_in_AWT_SWT_and_Swing protected static final int NEWT = 1; // http://jogamp.org/jogl/doc/NEWT-Overview.html /** Size of a short (in bytes). */ protected static final int SIZEOF_SHORT = Short.SIZE / 8; /** Size of an int (in bytes). */ protected static final int SIZEOF_INT = Integer.SIZE / 8; /** Size of a float (in bytes). */ protected static final int SIZEOF_FLOAT = Float.SIZE / 8; /** Size of a byte (in bytes). */ protected static final int SIZEOF_BYTE = Byte.SIZE / 8; /** Size of a vertex index. */ protected static final int SIZEOF_INDEX = SIZEOF_SHORT; /** Type of a vertex index. */ protected static final int INDEX_TYPE = GL.GL_UNSIGNED_SHORT; /** Initial sizes for arrays of input and tessellated data. */ protected static final int DEFAULT_IN_VERTICES = 64; protected static final int DEFAULT_IN_EDGES = 128; protected static final int DEFAULT_IN_TEXTURES = 64; protected static final int DEFAULT_TESS_VERTICES = 64; protected static final int DEFAULT_TESS_INDICES = 128; /** Maximum lights by default is 8, the minimum defined by OpenGL. */ protected static final int MAX_LIGHTS = 8; /** Maximum index value of a tessellated vertex. GLES restricts the vertex * indices to be of type unsigned short. Since Java only supports signed * shorts as primitive type we have 2^15 = 32768 as the maximum number of * vertices that can be referred to within a single VBO. */ protected static final int MAX_VERTEX_INDEX = 32767; protected static final int MAX_VERTEX_INDEX1 = MAX_VERTEX_INDEX + 1; /** Count of tessellated fill, line or point vertices that will * trigger a flush in the immediate mode. It doesn't necessarily * be equal to MAX_VERTEX_INDEX1, since the number of vertices can * be effectively much large since the renderer uses offsets to * refer to vertices beyond the MAX_VERTEX_INDEX limit. */ protected static final int FLUSH_VERTEX_COUNT = MAX_VERTEX_INDEX1; /** Maximum dimension of a texture used to hold font data. **/ protected static final int MAX_FONT_TEX_SIZE = 1024; /** Minimum stroke weight needed to apply the full path stroking * algorithm that properly generates caps and joins. */ protected static final float MIN_CAPS_JOINS_WEIGHT = 1.5f; /** Maximum length of linear paths to be stroked with the * full algorithm that generates accurate caps and joins. */ protected static final int MAX_CAPS_JOINS_LENGTH = 5000; /** Minimum array size to use arrayCopy method(). **/ protected static final int MIN_ARRAYCOPY_SIZE = 2; /** Enables/disables mipmap use. **/ protected static final boolean MIPMAPS_ENABLED = true; /** Machine Epsilon for float precision. **/ protected static float FLOAT_EPS = Float.MIN_VALUE; // Calculation of the Machine Epsilon for float precision. From: // http://en.wikipedia.org/wiki/Machine_epsilon#Approximation_using_Java static { float eps = 1.0f; do { eps /= 2.0f; } while ((float)(1.0 + (eps / 2.0)) != 1.0); FLOAT_EPS = eps; } /** * Set to true if the host system is big endian (PowerPC, MIPS, SPARC), false * if little endian (x86 Intel for Mac or PC). */ protected static boolean BIG_ENDIAN = ByteOrder.nativeOrder() == ByteOrder.BIG_ENDIAN; protected static final String SHADER_PREPROCESSOR_DIRECTIVE = "#ifdef GL_ES\n" + "precision mediump float;\n" + "precision mediump int;\n" + "#endif\n"; /////////////////////////////////////////////////////////////////////////////////// // OpenGL constants public static final int FALSE = GL.GL_FALSE; public static final int TRUE = GL.GL_TRUE; public static final int LESS = GL.GL_LESS; public static final int LEQUAL = GL.GL_LEQUAL; public static final int CCW = GL.GL_CCW; public static final int CW = GL.GL_CW; public static final int CULL_FACE = GL.GL_CULL_FACE; public static final int FRONT = GL.GL_FRONT; public static final int BACK = GL.GL_BACK; public static final int FRONT_AND_BACK = GL.GL_FRONT_AND_BACK; public static final int VIEWPORT = GL.GL_VIEWPORT; public static final int SCISSOR_TEST = GL.GL_SCISSOR_TEST; public static final int DEPTH_TEST = GL.GL_DEPTH_TEST; public static final int DEPTH_WRITEMASK = GL.GL_DEPTH_WRITEMASK; public static final int COLOR_BUFFER_BIT = GL.GL_COLOR_BUFFER_BIT; public static final int DEPTH_BUFFER_BIT = GL.GL_DEPTH_BUFFER_BIT; public static final int STENCIL_BUFFER_BIT = GL.GL_STENCIL_BUFFER_BIT; public static final int FUNC_ADD = GL.GL_FUNC_ADD; public static final int FUNC_MIN = GL2.GL_MIN; public static final int FUNC_MAX = GL2.GL_MAX; public static final int FUNC_REVERSE_SUBTRACT = GL.GL_FUNC_REVERSE_SUBTRACT; public static final int TEXTURE_2D = GL.GL_TEXTURE_2D; public static final int TEXTURE_RECTANGLE = GL2.GL_TEXTURE_RECTANGLE; public static final int TEXTURE_BINDING_2D = GL.GL_TEXTURE_BINDING_2D; public static final int TEXTURE_BINDING_RECTANGLE = GL2.GL_TEXTURE_BINDING_RECTANGLE; public static final int RGB = GL.GL_RGB; public static final int RGBA = GL.GL_RGBA; public static final int ALPHA = GL.GL_ALPHA; public static final int UNSIGNED_INT = GL.GL_UNSIGNED_INT; public static final int UNSIGNED_BYTE = GL.GL_UNSIGNED_BYTE; public static final int UNSIGNED_SHORT = GL.GL_UNSIGNED_SHORT; public static final int FLOAT = GL.GL_FLOAT; public static final int NEAREST = GL.GL_NEAREST; public static final int LINEAR = GL.GL_LINEAR; public static final int LINEAR_MIPMAP_NEAREST = GL.GL_LINEAR_MIPMAP_NEAREST; public static final int LINEAR_MIPMAP_LINEAR = GL.GL_LINEAR_MIPMAP_LINEAR; public static final int CLAMP_TO_EDGE = GL.GL_CLAMP_TO_EDGE; public static final int REPEAT = GL.GL_REPEAT; public static final int RGBA8 = GL.GL_RGBA8; public static final int DEPTH24_STENCIL8 = GL.GL_DEPTH24_STENCIL8; public static final int DEPTH_COMPONENT = GL2.GL_DEPTH_COMPONENT; public static final int DEPTH_COMPONENT16 = GL.GL_DEPTH_COMPONENT16; public static final int DEPTH_COMPONENT24 = GL.GL_DEPTH_COMPONENT24; public static final int DEPTH_COMPONENT32 = GL.GL_DEPTH_COMPONENT32; public static final int STENCIL_INDEX = GL2.GL_STENCIL_INDEX; public static final int STENCIL_INDEX1 = GL.GL_STENCIL_INDEX1; public static final int STENCIL_INDEX4 = GL.GL_STENCIL_INDEX4; public static final int STENCIL_INDEX8 = GL.GL_STENCIL_INDEX8; public static final int ARRAY_BUFFER = GL.GL_ARRAY_BUFFER; public static final int ELEMENT_ARRAY_BUFFER = GL.GL_ELEMENT_ARRAY_BUFFER; public static final int SAMPLES = GL.GL_SAMPLES; public static final int FRAMEBUFFER_COMPLETE = GL.GL_FRAMEBUFFER_COMPLETE; public static final int FRAMEBUFFER_INCOMPLETE_ATTACHMENT = GL.GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT; public static final int FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT = GL.GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT; public static final int FRAMEBUFFER_INCOMPLETE_DIMENSIONS = GL.GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS; public static final int FRAMEBUFFER_INCOMPLETE_FORMATS = GL.GL_FRAMEBUFFER_INCOMPLETE_FORMATS; public static final int FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER = GL2.GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER; public static final int FRAMEBUFFER_INCOMPLETE_READ_BUFFER = GL2.GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER; public static final int FRAMEBUFFER_UNSUPPORTED = GL.GL_FRAMEBUFFER_UNSUPPORTED; public static final int STATIC_DRAW = GL.GL_STATIC_DRAW; public static final int DYNAMIC_DRAW = GL.GL_DYNAMIC_DRAW; public static final int STREAM_DRAW = GL2.GL_STREAM_DRAW; public static final int READ_ONLY = GL2.GL_READ_ONLY; public static final int WRITE_ONLY = GL2.GL_WRITE_ONLY; public static final int READ_WRITE = GL2.GL_READ_WRITE; public static final int TRIANGLE_FAN = GL.GL_TRIANGLE_FAN; public static final int TRIANGLE_STRIP = GL.GL_TRIANGLE_STRIP; public static final int TRIANGLES = GL.GL_TRIANGLES; public static final int VENDOR = GL.GL_VENDOR; public static final int RENDERER = GL.GL_RENDERER; public static final int VERSION = GL.GL_VERSION; public static final int EXTENSIONS = GL.GL_EXTENSIONS; public static final int SHADING_LANGUAGE_VERSION = GL2ES2.GL_SHADING_LANGUAGE_VERSION; public static final int MAX_TEXTURE_SIZE = GL.GL_MAX_TEXTURE_SIZE; public static final int MAX_SAMPLES = GL2.GL_MAX_SAMPLES; public static final int ALIASED_LINE_WIDTH_RANGE = GL.GL_ALIASED_LINE_WIDTH_RANGE; public static final int ALIASED_POINT_SIZE_RANGE = GL.GL_ALIASED_POINT_SIZE_RANGE; public static final int DEPTH_BITS = GL.GL_DEPTH_BITS; public static final int STENCIL_BITS = GL.GL_STENCIL_BITS; public static final int TESS_WINDING_NONZERO = GLU.GLU_TESS_WINDING_NONZERO; public static final int TESS_WINDING_ODD = GLU.GLU_TESS_WINDING_ODD; public static final int TEXTURE0 = GL.GL_TEXTURE0; public static final int TEXTURE1 = GL.GL_TEXTURE1; public static final int TEXTURE2 = GL.GL_TEXTURE2; public static final int TEXTURE3 = GL.GL_TEXTURE3; public static final int TEXTURE_MIN_FILTER = GL.GL_TEXTURE_MIN_FILTER; public static final int TEXTURE_MAG_FILTER = GL.GL_TEXTURE_MAG_FILTER; public static final int TEXTURE_WRAP_S = GL.GL_TEXTURE_WRAP_S; public static final int TEXTURE_WRAP_T = GL.GL_TEXTURE_WRAP_T; public static final int BLEND = GL.GL_BLEND; public static final int ONE = GL.GL_ONE; public static final int ZERO = GL.GL_ZERO; public static final int SRC_ALPHA = GL.GL_SRC_ALPHA; public static final int DST_ALPHA = GL.GL_DST_ALPHA; public static final int ONE_MINUS_SRC_ALPHA = GL.GL_ONE_MINUS_SRC_ALPHA; public static final int ONE_MINUS_DST_COLOR = GL.GL_ONE_MINUS_DST_COLOR; public static final int ONE_MINUS_SRC_COLOR = GL.GL_ONE_MINUS_SRC_COLOR; public static final int DST_COLOR = GL.GL_DST_COLOR; public static final int SRC_COLOR = GL.GL_SRC_COLOR; public static final int FRAMEBUFFER = GL.GL_FRAMEBUFFER; public static final int COLOR_ATTACHMENT0 = GL.GL_COLOR_ATTACHMENT0; public static final int COLOR_ATTACHMENT1 = GL2.GL_COLOR_ATTACHMENT1; public static final int COLOR_ATTACHMENT2 = GL2.GL_COLOR_ATTACHMENT2; public static final int COLOR_ATTACHMENT3 = GL2.GL_COLOR_ATTACHMENT3; public static final int RENDERBUFFER = GL.GL_RENDERBUFFER; public static final int DEPTH_ATTACHMENT = GL.GL_DEPTH_ATTACHMENT; public static final int STENCIL_ATTACHMENT = GL.GL_STENCIL_ATTACHMENT; public static final int READ_FRAMEBUFFER = GL2.GL_READ_FRAMEBUFFER; public static final int DRAW_FRAMEBUFFER = GL2.GL_DRAW_FRAMEBUFFER; public static final int VERTEX_SHADER = GL2.GL_VERTEX_SHADER; public static final int FRAGMENT_SHADER = GL2.GL_FRAGMENT_SHADER; public static final int INFO_LOG_LENGTH = GL2.GL_INFO_LOG_LENGTH; public static final int SHADER_SOURCE_LENGTH = GL2.GL_SHADER_SOURCE_LENGTH; public static final int COMPILE_STATUS = GL2.GL_COMPILE_STATUS; public static final int LINK_STATUS = GL2.GL_LINK_STATUS; public static final int VALIDATE_STATUS = GL2.GL_VALIDATE_STATUS; public static final int MULTISAMPLE = GL.GL_MULTISAMPLE; public static final int POINT_SMOOTH = GL2.GL_POINT_SMOOTH; public static final int LINE_SMOOTH = GL.GL_LINE_SMOOTH; public static final int POLYGON_SMOOTH = GL2.GL_POLYGON_SMOOTH; /** Basic GL functionality, common to all profiles */ public GL gl; /** GLU interface **/ public GLU glu; /** The rendering context (holds rendering state info) */ public GLContext context; /** The AWT canvas where OpenGL rendering takes place */ public Canvas canvas; /** GLES2 functionality (shaders, etc) */ protected GL2ES2 gl2; /** GL2 desktop functionality (blit framebuffer, map buffer range, multisampled renerbuffers) */ protected GL2 gl2x; /** The PGraphics object using this interface */ protected PGraphicsOpenGL pg; /** Whether OpenGL has been initialized or not */ protected boolean initialized; /** Windowing toolkit */ protected static int toolkit = AWT; /** Selected GL profile */ protected GLProfile profile; /** The capabilities of the OpenGL rendering surface */ protected GLCapabilitiesImmutable capabilities; /** The rendering surface */ protected GLDrawable drawable; /** The AWT-OpenGL canvas */ protected GLCanvas canvasAWT; /** The NEWT-OpenGL canvas */ protected NewtCanvasAWT canvasNEWT; /** The NEWT window */ protected GLWindow window; /** The listener that fires the frame rendering in Processing */ protected PGLListener listener; /** Animator to drive the rendering thread in NEWT */ protected PGLAnimator animator; /** Desired target framerate */ protected float targetFramerate = 60; protected boolean setFramerate = false; /** Which texturing targets are enabled */ protected static boolean[] texturingTargets = { false, false }; /** Which textures are bound to each target */ protected static int[] boundTextures = { 0, 0 }; /////////////////////////////////////////////////////////////////////////////////// // FBO for anti-aliased rendering public static final boolean ENABLE_OSX_SCREEN_FBO = true; public static final int MIN_OSX_VER_FOR_SCREEN_FBO = 6; public static final int MIN_SAMPLES_FOR_SCREEN_FBO = 1; protected boolean needScreenFBO = false; protected int fboWidth, fboHeight; protected int numSamples; protected boolean multisample; protected boolean packedDepthStencil; protected int[] glColorTex = { 0 }; protected int[] glColorFbo = { 0 }; protected int[] glMultiFbo = { 0 }; protected int[] glColorRenderBuffer = { 0 }; protected int[] glPackedDepthStencil = { 0 }; protected int[] glDepthBuffer = { 0 }; protected int[] glStencilBuffer = { 0 }; protected int contextHashCode; /////////////////////////////////////////////////////////////////////////////////// // Texture rendering protected boolean loadedTex2DShader = false; protected int tex2DShaderProgram; protected int tex2DVertShader; protected int tex2DFragShader; protected GLContext tex2DShaderContext; protected int tex2DVertLoc; protected int tex2DTCoordLoc; protected boolean loadedTexRectShader = false; protected int texRectShaderProgram; protected int texRectVertShader; protected int texRectFragShader; protected GLContext texRectShaderContext; protected int texRectVertLoc; protected int texRectTCoordLoc; protected float[] texCoords = { // X, Y, U, V -1.0f, -1.0f, 0.0f, 0.0f, +1.0f, -1.0f, 1.0f, 0.0f, -1.0f, +1.0f, 0.0f, 1.0f, +1.0f, +1.0f, 1.0f, 1.0f }; protected FloatBuffer texData; protected String texVertShaderSource = "attribute vec2 inVertex;" + "attribute vec2 inTexcoord;" + "varying vec2 vertTexcoord;" + "void main() {" + " gl_Position = vec4(inVertex, 0, 1);" + " vertTexcoord = inTexcoord;" + "}"; protected String tex2DFragShaderSource = SHADER_PREPROCESSOR_DIRECTIVE + "uniform sampler2D textureSampler;" + "varying vec2 vertTexcoord;" + "void main() {" + " gl_FragColor = texture2D(textureSampler, vertTexcoord.st);" + "}"; protected String texRectFragShaderSource = SHADER_PREPROCESSOR_DIRECTIVE + "uniform sampler2DRect textureSampler;" + "varying vec2 vertTexcoord;" + "void main() {" + " gl_FragColor = texture2DRect(textureSampler, vertTexcoord.st);" + "}"; /////////////////////////////////////////////////////////////////////////////////// // Rectangle rendering protected boolean loadedRectShader = false; protected int rectShaderProgram; protected int rectVertShader; protected int rectFragShader; protected GLContext rectShaderContext; protected int rectVertLoc; protected int rectColorLoc; protected float[] rectCoords = { // X, Y -1.0f, -1.0f, +1.0f, -1.0f, -1.0f, +1.0f, +1.0f, +1.0f, }; protected FloatBuffer rectData; protected String rectVertShaderSource = "attribute vec2 inVertex;" + "void main() {" + " gl_Position = vec4(inVertex, 0, 1);" + "}"; protected String rectFragShaderSource = SHADER_PREPROCESSOR_DIRECTIVE + "uniform vec4 rectColor;" + "void main() {" + " gl_FragColor = rectColor;" + "}"; /////////////////////////////////////////////////////////////////////////////////// // 1-pixel color, depth, stencil buffers protected IntBuffer colorBuffer; protected FloatBuffer depthBuffer; protected ByteBuffer stencilBuffer; /////////////////////////////////////////////////////////////////////////////////// // Intialization, finalization public PGL(PGraphicsOpenGL pg) { this.pg = pg; glu = new GLU(); initialized = false; } protected void setFrameRate(float framerate) { if (targetFramerate != framerate) { if (60 < framerate) { // Disables v-sync gl.setSwapInterval(0); } else if (30 < framerate) { gl.setSwapInterval(1); } else { gl.setSwapInterval(2); } if ((60 < framerate && targetFramerate <= 60) || (framerate <= 60 && 60 < targetFramerate)) { // Enabling/disabling v-sync, we force a // surface reinitialization to avoid screen // no-paint issue observed on MacOSX. initialized = false; } targetFramerate = framerate; setFramerate = true; } } protected void initPrimarySurface(int antialias) { if (ENABLE_OSX_SCREEN_FBO) { needScreenFBO = false; glColorFbo[0] = 0; String osName = System.getProperty("os.name"); if (osName.equals("Mac OS X")) { String version = System.getProperty("os.version"); String[] parts = version.split("\\."); if (2 <= parts.length) { int num = Integer.parseInt(parts[1]); if (MIN_OSX_VER_FOR_SCREEN_FBO <= num && MIN_SAMPLES_FOR_SCREEN_FBO <= qualityToSamples(pg.quality)) { // Using an FBO for screen drawing works better than the // screen framebuffer. // This fixes the problem of antialiasing on Lion or newer, // the flickering associated to glReadPixels calls on // 10.6+, and it is in fact faster. needScreenFBO = true; } } } } if (profile == null) { profile = GLProfile.getDefault(); } else { // Restarting... if (canvasAWT != null) { // TODO: Even if the GLCanvas is put inside an animator, the rendering runs // inside the EDT, ask the JOGL guys about this. // animator.stop(); // animator.remove(canvasAWT); canvasAWT.removeGLEventListener(listener); pg.parent.removeListeners(canvasAWT); pg.parent.remove(canvasAWT); } else if (canvasNEWT != null) { animator.stop(); animator.remove(window); window.removeGLEventListener(listener); pg.parent.removeListeners(canvasNEWT); pg.parent.remove(canvasNEWT); } setFramerate = false; } // Setting up the desired GL capabilities; GLCapabilities caps = new GLCapabilities(profile); if (1 < antialias && !needScreenFBO) { caps.setSampleBuffers(true); caps.setNumSamples(antialias); } else { caps.setSampleBuffers(false); } caps.setDepthBits(24); caps.setStencilBits(8); caps.setAlphaBits(8); //caps.setFBO(false); caps.setBackgroundOpaque(true); if (toolkit == AWT) { canvasAWT = new GLCanvas(caps); canvasAWT.setBounds(0, 0, pg.width, pg.height); pg.parent.setLayout(new BorderLayout()); pg.parent.add(canvasAWT, BorderLayout.CENTER); pg.parent.removeListeners(pg.parent); pg.parent.addListeners(canvasAWT); listener = new PGLListener(); canvasAWT.addGLEventListener(listener); // animator = new PGLAnimator(canvasAWT); // animator.start(); capabilities = canvasAWT.getChosenGLCapabilities(); canvas = canvasAWT; canvasNEWT = null; } else if (toolkit == NEWT) { window = GLWindow.create(caps); canvasNEWT = new NewtCanvasAWT(window); pg.parent.setLayout(new BorderLayout()); pg.parent.add(canvasNEWT, BorderLayout.CENTER); pg.parent.removeListeners(pg.parent); pg.parent.addListeners(canvasNEWT); listener = new PGLListener(); window.addGLEventListener(listener); animator = new PGLAnimator(window); animator.start(); capabilities = window.getChosenGLCapabilities(); canvas = canvasNEWT; canvasAWT = null; } initialized = true; } protected void initOffscreenSurface(PGL primary) { context = primary.context; capabilities = primary.capabilities; drawable = null; initialized = true; } protected void updatePrimary() { if (!setFramerate) { setFrameRate(targetFramerate); } if (needScreenFBO && glColorFbo[0] == 0) { numSamples = qualityToSamples(pg.quality); String ext = gl.glGetString(GL.GL_EXTENSIONS); if (-1 < ext.indexOf("texture_non_power_of_two")) { fboWidth = pg.width; fboHeight = pg.height; } else { fboWidth = PGL.nextPowerOfTwo(pg.width); fboHeight = PGL.nextPowerOfTwo(pg.height); } multisample = 1 < numSamples; if (multisample && gl2x == null) { throw new RuntimeException("Doesn't have the OpenGL extensions necessary for multisampling."); } packedDepthStencil = ext.indexOf("packed_depth_stencil") != -1; contextHashCode = context.hashCode(); // Create the color texture... gl.glGenTextures(1, glColorTex, 0); gl.glBindTexture(GL.GL_TEXTURE_2D, glColorTex[0]); gl.glTexParameteri(GL.GL_TEXTURE_2D, GL.GL_TEXTURE_MIN_FILTER, GL.GL_NEAREST); gl.glTexParameteri(GL.GL_TEXTURE_2D, GL.GL_TEXTURE_MAG_FILTER, GL.GL_NEAREST); gl.glTexParameteri(GL.GL_TEXTURE_2D, GL.GL_TEXTURE_WRAP_S, GL.GL_CLAMP_TO_EDGE); gl.glTexParameteri(GL.GL_TEXTURE_2D, GL.GL_TEXTURE_WRAP_T, GL.GL_CLAMP_TO_EDGE); gl.glTexImage2D(GL.GL_TEXTURE_2D, 0, GL.GL_RGBA, fboWidth, fboHeight, 0, GL.GL_RGBA, GL.GL_UNSIGNED_BYTE, null); gl.glBindTexture(GL.GL_TEXTURE_2D, 0); // ...and attach to the color framebuffer. gl.glGenFramebuffers(1, glColorFbo, 0); gl.glBindFramebuffer(GL.GL_FRAMEBUFFER, glColorFbo[0]); gl.glFramebufferTexture2D(GL.GL_FRAMEBUFFER, GL.GL_COLOR_ATTACHMENT0, GL.GL_TEXTURE_2D, glColorTex[0], 0); // Clear the color buffer in the color FBO gl.glClearColor(0, 0, 0, 0); gl.glClear(GL.GL_COLOR_BUFFER_BIT); if (multisample) { // We need multisampled FBO: gl.glBindFramebuffer(GL.GL_FRAMEBUFFER, 0); // Now, creating mutisampled FBO with packed depth and stencil buffers. gl.glGenFramebuffers(1, glMultiFbo, 0); gl.glBindFramebuffer(GL.GL_FRAMEBUFFER, glMultiFbo[0]); // color render buffer... gl.glGenRenderbuffers(1, glColorRenderBuffer, 0); gl.glBindRenderbuffer(GL.GL_RENDERBUFFER, glColorRenderBuffer[0]); gl2x.glRenderbufferStorageMultisample(GL.GL_RENDERBUFFER, numSamples, GL.GL_RGBA8, fboWidth, fboHeight); gl.glFramebufferRenderbuffer(GL.GL_FRAMEBUFFER, GL.GL_COLOR_ATTACHMENT0, GL.GL_RENDERBUFFER, glColorRenderBuffer[0]); if (packedDepthStencil) { // packed depth+stencil buffer... gl.glGenRenderbuffers(1, glPackedDepthStencil, 0); gl.glBindRenderbuffer(GL.GL_RENDERBUFFER, glPackedDepthStencil[0]); gl2x.glRenderbufferStorageMultisample(GL.GL_RENDERBUFFER, numSamples, GL.GL_DEPTH24_STENCIL8, fboWidth, fboHeight); gl.glFramebufferRenderbuffer(GL.GL_FRAMEBUFFER, GL.GL_DEPTH_ATTACHMENT, GL.GL_RENDERBUFFER, glPackedDepthStencil[0]); gl.glFramebufferRenderbuffer(GL.GL_FRAMEBUFFER, GL.GL_STENCIL_ATTACHMENT, GL.GL_RENDERBUFFER, glPackedDepthStencil[0]); } else { // Separate depth and stencil buffers... gl.glGenRenderbuffers(1, glDepthBuffer, 0); gl.glBindRenderbuffer(GL.GL_RENDERBUFFER, glDepthBuffer[0]); gl2x.glRenderbufferStorageMultisample(GL.GL_RENDERBUFFER, numSamples, GL.GL_DEPTH_COMPONENT24, fboWidth, fboHeight); gl.glFramebufferRenderbuffer(GL.GL_FRAMEBUFFER, GL.GL_DEPTH_ATTACHMENT, GL.GL_RENDERBUFFER, glDepthBuffer[0]); // Some hardware doesn't support distinct depth and stencil buffers: // http://lists.apple.com/archives/mac-opengl/2008/Aug/msg00089.html // which just results in an unsupported framebuffer error. gl.glGenRenderbuffers(1, glStencilBuffer, 0); gl.glBindRenderbuffer(GL.GL_RENDERBUFFER, glStencilBuffer[0]); gl2x.glRenderbufferStorageMultisample(GL.GL_RENDERBUFFER, numSamples, GL.GL_STENCIL_INDEX8, fboWidth, fboHeight); gl.glFramebufferRenderbuffer(GL.GL_FRAMEBUFFER, GL.GL_STENCIL_ATTACHMENT, GL.GL_RENDERBUFFER, glStencilBuffer[0]); } // Clear all the buffers in the multisample FBO gl.glClearDepth(1); gl.glClearStencil(0); gl.glClearColor(0, 0, 0, 0); gl.glClear(GL.GL_DEPTH_BUFFER_BIT | GL.GL_STENCIL_BUFFER_BIT | GL.GL_COLOR_BUFFER_BIT); // All set with multisampled FBO! gl.glBindFramebuffer(GL.GL_FRAMEBUFFER, glColorFbo[0]); } else { if (packedDepthStencil) { // packed depth+stencil buffer... gl.glGenRenderbuffers(1, glPackedDepthStencil, 0); gl.glBindRenderbuffer(GL.GL_RENDERBUFFER, glPackedDepthStencil[0]); gl.glRenderbufferStorage(GL.GL_RENDERBUFFER, GL.GL_DEPTH24_STENCIL8, fboWidth, fboHeight); gl.glFramebufferRenderbuffer(GL.GL_FRAMEBUFFER, GL.GL_DEPTH_ATTACHMENT, GL.GL_RENDERBUFFER, glPackedDepthStencil[0]); gl.glFramebufferRenderbuffer(GL.GL_FRAMEBUFFER, GL.GL_STENCIL_ATTACHMENT, GL.GL_RENDERBUFFER, glPackedDepthStencil[0]); } else { // Separate depth and stencil buffers... gl.glGenRenderbuffers(1, glDepthBuffer, 0); gl.glBindRenderbuffer(GL.GL_RENDERBUFFER, glDepthBuffer[0]); gl.glRenderbufferStorage(GL.GL_RENDERBUFFER, GL.GL_DEPTH_COMPONENT24, fboWidth, fboHeight); gl.glFramebufferRenderbuffer(GL.GL_FRAMEBUFFER, GL.GL_DEPTH_ATTACHMENT, GL.GL_RENDERBUFFER, glDepthBuffer[0]); gl.glGenRenderbuffers(1, glStencilBuffer, 0); gl.glBindRenderbuffer(GL.GL_RENDERBUFFER, glStencilBuffer[0]); gl.glRenderbufferStorage(GL.GL_RENDERBUFFER, GL.GL_STENCIL_INDEX8, fboWidth, fboHeight); gl.glFramebufferRenderbuffer(GL.GL_FRAMEBUFFER, GL.GL_STENCIL_ATTACHMENT, GL.GL_RENDERBUFFER, glStencilBuffer[0]); } // Clear all the buffers in the color FBO gl.glClearDepth(1); gl.glClearStencil(0); gl.glClear(GL.GL_DEPTH_BUFFER_BIT | GL.GL_STENCIL_BUFFER_BIT); } // The screen framebuffer is the color FBO just created. We need // to update the screenFramebuffer object so when the framebuffer // is popped back to the screen, the correct id is set. PGraphicsOpenGL.screenFramebuffer.glFbo = glColorFbo[0]; } else { // To make sure that the default screen buffer is used, specially after // doing screen rendering on an FBO (the OSX 10.7+ above). PGraphicsOpenGL.screenFramebuffer.glFbo = 0; } } protected void updateOffscreen(PGL primary) { gl = primary.gl; gl2 = primary.gl2; gl2x = primary.gl2x; } protected boolean primaryIsDoubleBuffered() { // When using the multisampled FBO, the color // FBO is single buffered as it has only one // texture bound to it. return glColorFbo[0] == 0; } protected boolean primaryIsFboBacked() { return glColorFbo[0] != 0; } protected int getFboTexTarget() { return GL.GL_TEXTURE_2D; } protected int getFboTexName() { return glColorTex[0]; } protected int getFboWidth() { return fboWidth; } protected int getFboHeight() { return fboHeight; } protected void bindPrimaryColorFBO() { if (multisample) { // Blit the contents of the multisampled FBO into the color FBO, // so the later is up to date. gl.glBindFramebuffer(GL2.GL_READ_FRAMEBUFFER, glMultiFbo[0]); gl.glBindFramebuffer(GL2.GL_DRAW_FRAMEBUFFER, glColorFbo[0]); gl2x.glBlitFramebuffer(0, 0, fboWidth, fboHeight, 0, 0, fboWidth, fboHeight, GL.GL_COLOR_BUFFER_BIT, GL.GL_NEAREST); } gl.glBindFramebuffer(GL.GL_FRAMEBUFFER, glColorFbo[0]); PGraphicsOpenGL.screenFramebuffer.glFbo = glColorFbo[0]; // Make the color buffer opaque so it doesn't show // the background when drawn on top of another surface. gl.glColorMask(false, false, false, true); gl.glClearColor(0, 0, 0, 1); gl.glClear(GL.GL_COLOR_BUFFER_BIT); gl.glColorMask(true, true, true, true); } protected void bindPrimaryMultiFBO() { if (multisample) { gl.glBindFramebuffer(GL.GL_FRAMEBUFFER, glMultiFbo[0]); PGraphicsOpenGL.screenFramebuffer.glFbo = glMultiFbo[0]; } } protected void releaseScreenFBO() { gl.glDeleteTextures(1, glColorTex, 0); gl.glDeleteFramebuffers(1, glColorFbo, 0); if (packedDepthStencil) { gl.glDeleteRenderbuffers(1, glPackedDepthStencil, 0); } else { gl.glDeleteRenderbuffers(1, glDepthBuffer, 0); gl.glDeleteRenderbuffers(1, glStencilBuffer, 0); } if (multisample) { gl.glDeleteFramebuffers(1, glMultiFbo, 0); gl.glDeleteRenderbuffers(1, glColorRenderBuffer, 0); } } protected int qualityToSamples(int quality) { if (quality <= 1) { return 1; } else { // Number of samples is always an even number: int n = 2 * (quality / 2); return n; } } /////////////////////////////////////////////////////////////////////////////////// // Frame rendering protected void beginOnscreenDraw(boolean clear) { if (glColorFbo[0] != 0) { if (multisample) { // Render the scene to the mutisampled buffer... gl.glBindFramebuffer(GL.GL_FRAMEBUFFER, glMultiFbo[0]); gl2x.glDrawBuffer(GL.GL_COLOR_ATTACHMENT0); // Now the screen buffer is the multisample FBO. PGraphicsOpenGL.screenFramebuffer.glFbo = glMultiFbo[0]; } else { gl.glBindFramebuffer(GL.GL_FRAMEBUFFER, glColorFbo[0]); if (gl2x != null) gl2x.glDrawBuffer(GL.GL_COLOR_ATTACHMENT0); PGraphicsOpenGL.screenFramebuffer.glFbo = glColorFbo[0]; } } } protected void endOnscreenDraw(boolean clear0) { if (glColorFbo[0] != 0) { if (multisample) { // Blit the contents of the multisampled FBO into the color FBO: gl.glBindFramebuffer(GL2.GL_READ_FRAMEBUFFER, glMultiFbo[0]); gl.glBindFramebuffer(GL2.GL_DRAW_FRAMEBUFFER, glColorFbo[0]); gl2x.glBlitFramebuffer(0, 0, fboWidth, fboHeight, 0, 0, fboWidth, fboHeight, GL.GL_COLOR_BUFFER_BIT, GL.GL_NEAREST); } // And finally write the color texture to the screen, without blending. gl.glBindFramebuffer(GL.GL_FRAMEBUFFER, 0); gl.glClearDepth(1); gl.glClearColor(0, 0, 0, 0); gl.glClear(GL.GL_DEPTH_BUFFER_BIT | GL.GL_STENCIL_BUFFER_BIT); gl.glDisable(GL.GL_BLEND); drawTexture(GL.GL_TEXTURE_2D, glColorTex[0], fboWidth, fboHeight, 0, 0, pg.width, pg.height, 0, 0, pg.width, pg.height); // Leaving the color FBO currently bound as the screen FB. gl.glBindFramebuffer(GL.GL_FRAMEBUFFER, glColorFbo[0]); PGraphicsOpenGL.screenFramebuffer.glFbo = glColorFbo[0]; } } protected void beginOffscreenDraw(boolean clear) { } protected void endOffscreenDraw(boolean clear0) { } protected boolean canDraw() { return initialized && pg.parent.isDisplayable(); } protected void requestDraw() { if (initialized) { try { //animator.requestDisplay(); if (toolkit == AWT) { canvasAWT.display(); } else if (toolkit == NEWT) { animator.requestDisplay(); } } catch (GLException e) { // Unwrap GLException to only the causing exception and so // avoid the additional jogl lines. Throwable tr = e.getCause(); throw (RuntimeException)tr; } } } /////////////////////////////////////////////////////////////////////////////////// // Caps query public String getString(int name) { return gl.glGetString(name); } public void getIntegerv(int name, int[] values, int offset) { gl.glGetIntegerv(name, values, offset); } public void getBooleanv(int name, boolean[] values, int offset) { if (-1 < name) { byte[] bvalues = new byte[values.length]; gl.glGetBooleanv(name, bvalues, offset); for (int i = 0; i < values.length; i++) { values[i] = bvalues[i] != 0; } } else { Arrays.fill(values, false); } } /////////////////////////////////////////////////////////////////////////////////// // Enable/disable caps public void enable(int cap) { if (-1 < cap) { gl.glEnable(cap); } } public void disable(int cap) { if (-1 < cap) { gl.glDisable(cap); } } /////////////////////////////////////////////////////////////////////////////////// // Render control public void flush() { gl.glFlush(); } public void finish() { gl.glFinish(); } ///////////////////////////////////////////////////////////////////////////////// // Error handling public int getError() { return gl.glGetError(); } public String errorString(int err) { return glu.gluErrorString(err); } ///////////////////////////////////////////////////////////////////////////////// // Rendering options public void frontFace(int mode) { gl.glFrontFace(mode); } public void cullFace(int mode) { gl.glCullFace(mode); } public void depthMask(boolean flag) { gl.glDepthMask(flag); } public void depthFunc(int func) { gl.glDepthFunc(func); } ///////////////////////////////////////////////////////////////////////////////// // Textures public void genTextures(int n, int[] ids, int offset) { gl.glGenTextures(n, ids, offset); } public void deleteTextures(int n, int[] ids, int offset) { gl.glDeleteTextures(n, ids, offset); } public void activeTexture(int unit) { gl.glActiveTexture(unit); } public void bindTexture(int target, int id) { gl.glBindTexture(target, id); if (target == TEXTURE_2D) { boundTextures[0] = id; } else if (target == TEXTURE_RECTANGLE) { boundTextures[1] = id; } } public void texImage2D(int target, int level, int internalFormat, int width, int height, int border, int format, int type, Buffer data) { gl.glTexImage2D(target, level, internalFormat, width, height, border, format, type, data); } public void texSubImage2D(int target, int level, int xOffset, int yOffset, int width, int height, int format, int type, Buffer data) { gl.glTexSubImage2D(target, level, xOffset, yOffset, width, height, format, type, data); } public void texParameteri(int target, int param, int value) { gl.glTexParameteri(target, param, value); } public void getTexParameteriv(int target, int param, int[] values, int offset) { gl.glGetTexParameteriv(target, param, values, offset); } public void generateMipmap(int target) { gl.glGenerateMipmap(target); } ///////////////////////////////////////////////////////////////////////////////// // Vertex Buffers public void genBuffers(int n, int[] ids, int offset) { gl.glGenBuffers(n, ids, offset); } public void deleteBuffers(int n, int[] ids, int offset) { gl.glDeleteBuffers(n, ids, offset); } public void bindBuffer(int target, int id) { gl.glBindBuffer(target, id); } public void bufferData(int target, int size, Buffer data, int usage) { gl.glBufferData(target, size, data, usage); } public void bufferSubData(int target, int offset, int size, Buffer data) { gl.glBufferSubData(target, offset, size, data); } public void drawArrays(int mode, int first, int count) { gl.glDrawArrays(mode, first, count); } public void drawElements(int mode, int count, int type, int offset) { gl.glDrawElements(mode, count, type, offset); } public void enableVertexAttribArray(int loc) { gl2.glEnableVertexAttribArray(loc); } public void disableVertexAttribArray(int loc) { gl2.glDisableVertexAttribArray(loc); } public void vertexAttribPointer(int loc, int size, int type, boolean normalized, int stride, int offset) { gl2.glVertexAttribPointer(loc, size, type, normalized, stride, offset); } public void vertexAttribPointer(int loc, int size, int type, boolean normalized, int stride, Buffer data) { gl2.glVertexAttribPointer(loc, size, type, normalized, stride, data); } public ByteBuffer mapBuffer(int target, int access) { return gl2.glMapBuffer(target, access); } public ByteBuffer mapBufferRange(int target, int offset, int length, int access) { if (gl2x != null) { return gl2x.glMapBufferRange(target, offset, length, access); } else { return null; } } public void unmapBuffer(int target) { gl2.glUnmapBuffer(target); } ///////////////////////////////////////////////////////////////////////////////// // Framebuffers, renderbuffers public void genFramebuffers(int n, int[] ids, int offset) { gl.glGenFramebuffers(n, ids, offset); } public void deleteFramebuffers(int n, int[] ids, int offset) { gl.glDeleteFramebuffers(n, ids, offset); } public void genRenderbuffers(int n, int[] ids, int offset) { gl.glGenRenderbuffers(n, ids, offset); } public void deleteRenderbuffers(int n, int[] ids, int offset) { gl.glDeleteRenderbuffers(n, ids, offset); } public void bindFramebuffer(int target, int id) { gl.glBindFramebuffer(target, id); } public void blitFramebuffer(int srcX0, int srcY0, int srcX1, int srcY1, int dstX0, int dstY0, int dstX1, int dstY1, int mask, int filter) { if (gl2x != null) { gl2x.glBlitFramebuffer(srcX0, srcY0, srcX1, srcY1, dstX0, dstY0, dstX1, dstY1, mask, filter); } } public void framebufferTexture2D(int target, int attachment, int texTarget, int texId, int level) { gl.glFramebufferTexture2D(target, attachment, texTarget, texId, level); } public void bindRenderbuffer(int target, int id) { gl.glBindRenderbuffer(target, id); } public void renderbufferStorageMultisample(int target, int samples, int format, int width, int height) { if (gl2x != null) { gl2x.glRenderbufferStorageMultisample(target, samples, format, width, height); } } public void renderbufferStorage(int target, int format, int width, int height) { gl.glRenderbufferStorage(target, format, width, height); } public void framebufferRenderbuffer(int target, int attachment, int rendbufTarget, int rendbufId) { gl.glFramebufferRenderbuffer(target, attachment, rendbufTarget, rendbufId); } public int checkFramebufferStatus(int target) { return gl.glCheckFramebufferStatus(target); } ///////////////////////////////////////////////////////////////////////////////// // Shaders public int createProgram() { return gl2.glCreateProgram(); } public void deleteProgram(int id) { gl2.glDeleteProgram(id); } public int createShader(int type) { return gl2.glCreateShader(type); } public void deleteShader(int id) { gl2.glDeleteShader(id); } public void linkProgram(int prog) { gl2.glLinkProgram(prog); } public void validateProgram(int prog) { gl2.glValidateProgram(prog); } public void useProgram(int prog) { gl2.glUseProgram(prog); } public int getAttribLocation(int prog, String name) { return gl2.glGetAttribLocation(prog, name); } public int getUniformLocation(int prog, String name) { return gl2.glGetUniformLocation(prog, name); } public void uniform1i(int loc, int value) { gl2.glUniform1i(loc, value); } public void uniform2i(int loc, int value0, int value1) { gl2.glUniform2i(loc, value0, value1); } public void uniform3i(int loc, int value0, int value1, int value2) { gl2.glUniform3i(loc, value0, value1, value2); } public void uniform4i(int loc, int value0, int value1, int value2, int value3) { gl2.glUniform4i(loc, value0, value1, value2, value3); } public void uniform1f(int loc, float value) { gl2.glUniform1f(loc, value); } public void uniform2f(int loc, float value0, float value1) { gl2.glUniform2f(loc, value0, value1); } public void uniform3f(int loc, float value0, float value1, float value2) { gl2.glUniform3f(loc, value0, value1, value2); } public void uniform4f(int loc, float value0, float value1, float value2, float value3) { gl2.glUniform4f(loc, value0, value1, value2, value3); } public void uniform1iv(int loc, int count, int[] v, int offset) { gl2.glUniform1iv(loc, count, v, offset); } public void uniform2iv(int loc, int count, int[] v, int offset) { gl2.glUniform2iv(loc, count, v, offset); } public void uniform3iv(int loc, int count, int[] v, int offset) { gl2.glUniform3iv(loc, count, v, offset); } public void uniform4iv(int loc, int count, int[] v, int offset) { gl2.glUniform4iv(loc, count, v, offset); } public void uniform1fv(int loc, int count, float[] v, int offset) { gl2.glUniform1fv(loc, count, v, offset); } public void uniform2fv(int loc, int count, float[] v, int offset) { gl2.glUniform2fv(loc, count, v, offset); } public void uniform3fv(int loc, int count, float[] v, int offset) { gl2.glUniform3fv(loc, count, v, offset); } public void uniform4fv(int loc, int count, float[] v, int offset) { gl2.glUniform4fv(loc, count, v, offset); } public void uniformMatrix2fv(int loc, int count, boolean transpose, float[] mat, int offset) { gl2.glUniformMatrix2fv(loc, count, transpose, mat, offset); } public void uniformMatrix3fv(int loc, int count, boolean transpose, float[] mat, int offset) { gl2.glUniformMatrix3fv(loc, count, transpose, mat, offset); } public void uniformMatrix4fv(int loc, int count, boolean transpose, float[] mat, int offset) { gl2.glUniformMatrix4fv(loc, count, transpose, mat, offset); } public void vertexAttrib1f(int loc, float value) { gl2.glVertexAttrib1f(loc, value); } public void vertexAttrib2f(int loc, float value0, float value1) { gl2.glVertexAttrib2f(loc, value0, value1); } public void vertexAttrib3f(int loc, float value0, float value1, float value2) { gl2.glVertexAttrib3f(loc, value0, value1, value2); } public void vertexAttrib4f(int loc, float value0, float value1, float value2, float value3) { gl2.glVertexAttrib4f(loc, value0, value1, value2, value3); } public void vertexAttrib1fv(int loc, float[] v, int offset) { gl2.glVertexAttrib1fv(loc, v, offset); } public void vertexAttrib2fv(int loc, float[] v, int offset) { gl2.glVertexAttrib2fv(loc, v, offset); } public void vertexAttrib3fv(int loc, float[] v, int offset) { gl2.glVertexAttrib3fv(loc, v, offset); } public void vertexAttrib4fv(int loc, float[] v, int offset) { gl2.glVertexAttrib4fv(loc, v, offset); } public void shaderSource(int id, String source) { gl2.glShaderSource(id, 1, new String[] { source }, (int[]) null, 0); } public void compileShader(int id) { gl2.glCompileShader(id); } public void attachShader(int prog, int shader) { gl2.glAttachShader(prog, shader); } public void getShaderiv(int shader, int pname, int[] params, int offset) { gl2.glGetShaderiv(shader, pname, params, offset); } public String getShaderInfoLog(int shader) { int[] val = { 0 }; gl2.glGetShaderiv(shader, GL2.GL_INFO_LOG_LENGTH, val, 0); int length = val[0]; byte[] log = new byte[length]; gl2.glGetShaderInfoLog(shader, length, val, 0, log, 0); return new String(log); } public void getProgramiv(int prog, int pname, int[] params, int offset) { gl2.glGetProgramiv(prog, pname, params, offset); } public String getProgramInfoLog(int prog) { int[] val = { 0 }; gl2.glGetShaderiv(prog, GL2.GL_INFO_LOG_LENGTH, val, 0); int length = val[0]; byte[] log = new byte[length]; gl2.glGetProgramInfoLog(prog, length, val, 0, log, 0); return new String(log); } ///////////////////////////////////////////////////////////////////////////////// // Viewport public void viewport(int x, int y, int width, int height) { gl.glViewport(x, y, width, height); } ///////////////////////////////////////////////////////////////////////////////// // Clipping (scissor test) public void scissor(int x, int y, int w, int h) { gl.glScissor(x, y, w, h); } ///////////////////////////////////////////////////////////////////////////////// // Blending public void blendEquation(int eq) { gl.glBlendEquation(eq); } public void blendFunc(int srcFactor, int dstFactor) { gl.glBlendFunc(srcFactor, dstFactor); } ///////////////////////////////////////////////////////////////////////////////// // Pixels public void readBuffer(int buf) { if (gl2x != null) { gl2x.glReadBuffer(buf); } } public void readPixels(int x, int y, int width, int height, int format, int type, Buffer buffer) { gl.glReadPixels(x, y, width, height, format, type, buffer); } public void drawBuffer(int buf) { if (gl2x != null) { gl2x.glDrawBuffer(buf); } } public void clearDepth(float d) { gl.glClearDepthf(d); } public void clearStencil(int s) { gl.glClearStencil(s); } public void colorMask(boolean wr, boolean wg, boolean wb, boolean wa) { gl.glColorMask(wr, wg, wb, wa); } public void clearColor(float r, float g, float b, float a) { gl.glClearColor(r, g, b, a); } public void clear(int mask) { gl.glClear(mask); } ///////////////////////////////////////////////////////////////////////////////// // Context interface protected Context createEmptyContext() { return new Context(); } protected Context getCurrentContext() { return new Context(context); } protected class Context { protected GLContext glContext; Context() { glContext = null; } Context(GLContext context) { glContext = context; } boolean current() { return equal(context); } boolean equal(GLContext context) { if (glContext == null || context == null) { // A null context means a still non-created resource, // so it is considered equal to the argument. return true; } else { return glContext.hashCode() == context.hashCode(); } } int code() { if (glContext == null) { return -1; } else { return glContext.hashCode(); } } } ///////////////////////////////////////////////////////////////////////////////// // Tessellator interface protected Tessellator createTessellator(TessellatorCallback callback) { return new Tessellator(callback); } protected class Tessellator { protected GLUtessellator tess; protected TessellatorCallback callback; protected GLUCallback gluCallback; public Tessellator(TessellatorCallback callback) { this.callback = callback; tess = GLU.gluNewTess(); gluCallback = new GLUCallback(); GLU.gluTessCallback(tess, GLU.GLU_TESS_BEGIN, gluCallback); GLU.gluTessCallback(tess, GLU.GLU_TESS_END, gluCallback); GLU.gluTessCallback(tess, GLU.GLU_TESS_VERTEX, gluCallback); GLU.gluTessCallback(tess, GLU.GLU_TESS_COMBINE, gluCallback); GLU.gluTessCallback(tess, GLU.GLU_TESS_ERROR, gluCallback); } public void beginPolygon() { GLU.gluTessBeginPolygon(tess, null); } public void endPolygon() { GLU.gluTessEndPolygon(tess); } public void setWindingRule(int rule) { GLU.gluTessProperty(tess, GLU.GLU_TESS_WINDING_RULE, rule); } public void beginContour() { GLU.gluTessBeginContour(tess); } public void endContour() { GLU.gluTessEndContour(tess); } public void addVertex(double[] v) { GLU.gluTessVertex(tess, v, 0, v); } protected class GLUCallback extends GLUtessellatorCallbackAdapter { public void begin(int type) { callback.begin(type); } public void end() { callback.end(); } public void vertex(Object data) { callback.vertex(data); } public void combine(double[] coords, Object[] data, float[] weight, Object[] outData) { callback.combine(coords, data, weight, outData); } public void error(int errnum) { callback.error(errnum); } } } protected String tessError(int err) { return glu.gluErrorString(err); } protected interface TessellatorCallback { public void begin(int type); public void end(); public void vertex(Object data); public void combine(double[] coords, Object[] data, float[] weight, Object[] outData); public void error(int errnum); } /////////////////////////////////////////////////////////////////////////////////// // Utility functions protected boolean contextIsCurrent(Context other) { return other == null || other.current(); } protected void enableTexturing(int target) { enable(target); if (target == TEXTURE_2D) { texturingTargets[0] = true; } else if (target == TEXTURE_RECTANGLE) { texturingTargets[1] = true; } } protected void disableTexturing(int target) { disable(target); if (target == TEXTURE_2D) { texturingTargets[0] = false; } else if (target == TEXTURE_RECTANGLE) { texturingTargets[1] = false; } } protected boolean texturingIsEnabled(int target) { if (target == TEXTURE_2D) { return texturingTargets[0]; } else if (target == TEXTURE_RECTANGLE) { return texturingTargets[1]; } else { return false; } } protected boolean textureIsBound(int target, int id) { if (target == TEXTURE_2D) { return boundTextures[0] == id; } else if (target == TEXTURE_RECTANGLE) { return boundTextures[1] == id; } else { return false; } } public void initTexture(int target, int format, int width, int height) { int[] texels = new int[width * height]; texSubImage2D(target, 0, 0, 0, width, height, format, UNSIGNED_BYTE, IntBuffer.wrap(texels)); } public void copyToTexture(int target, int format, int id, int x, int y, int w, int h, IntBuffer buffer) { activeTexture(TEXTURE0); boolean enabledTex = false; if (!texturingIsEnabled(target)) { enableTexturing(target); enabledTex = true; } bindTexture(target, id); texSubImage2D(target, 0, x, y, w, h, format, UNSIGNED_BYTE, buffer); bindTexture(target, 0); if (enabledTex) { disableTexturing(target); } } public void drawTexture(int target, int id, int width, int height, int X0, int Y0, int X1, int Y1) { drawTexture(target, id, width, height, X0, Y0, X1, Y1, X0, Y0, X1, Y1); } public void drawTexture(int target, int id, int width, int height, int texX0, int texY0, int texX1, int texY1, int scrX0, int scrY0, int scrX1, int scrY1) { if (target == TEXTURE_2D) { drawTexture2D(id, width, height, texX0, texY0, texX1, texY1, scrX0, scrY0, scrX1, scrY1); } else if (target == TEXTURE_RECTANGLE) { drawTextureRect(id, width, height, texX0, texY0, texX1, texY1, scrX0, scrY0, scrX1, scrY1); } } public void drawTexture2D(int id, int width, int height, int texX0, int texY0, int texX1, int texY1, int scrX0, int scrY0, int scrX1, int scrY1) { if (!loadedTex2DShader || tex2DShaderContext.hashCode() != context.hashCode()) { tex2DVertShader = createShader(VERTEX_SHADER, texVertShaderSource); tex2DFragShader = createShader(FRAGMENT_SHADER, tex2DFragShaderSource); if (0 < tex2DVertShader && 0 < tex2DFragShader) { tex2DShaderProgram = createProgram(tex2DVertShader, tex2DFragShader); } if (0 < tex2DShaderProgram) { tex2DVertLoc = getAttribLocation(tex2DShaderProgram, "inVertex"); tex2DTCoordLoc = getAttribLocation(tex2DShaderProgram, "inTexcoord"); } loadedTex2DShader = true; tex2DShaderContext = context; } if (texData == null) { texData = allocateDirectFloatBuffer(texCoords.length); } if (0 < tex2DShaderProgram) { // The texture overwrites anything drawn earlier. boolean[] depthTest = new boolean[1]; getBooleanv(DEPTH_TEST, depthTest, 0); disable(DEPTH_TEST); // When drawing the texture we don't write to the // depth mask, so the texture remains in the background // and can be occluded by anything drawn later, even if // if it is behind it. boolean[] depthMask = new boolean[1]; getBooleanv(DEPTH_WRITEMASK, depthMask, 0); depthMask(false); useProgram(tex2DShaderProgram); enableVertexAttribArray(tex2DVertLoc); enableVertexAttribArray(tex2DTCoordLoc); // Vertex coordinates of the textured quad are specified // in normalized screen space (-1, 1): // Corner 1 texCoords[ 0] = 2 * (float)scrX0 / pg.width - 1; texCoords[ 1] = 2 * (float)scrY0 / pg.height - 1; texCoords[ 2] = (float)texX0 / width; texCoords[ 3] = (float)texY0 / height; // Corner 2 texCoords[ 4] = 2 * (float)scrX1 / pg.width - 1; texCoords[ 5] = 2 * (float)scrY0 / pg.height - 1; texCoords[ 6] = (float)texX1 / width; texCoords[ 7] = (float)texY0 / height; // Corner 3 texCoords[ 8] = 2 * (float)scrX0 / pg.width - 1; texCoords[ 9] = 2 * (float)scrY1 / pg.height - 1; texCoords[10] = (float)texX0 / width; texCoords[11] = (float)texY1 / height; // Corner 4 texCoords[12] = 2 * (float)scrX1 / pg.width - 1; texCoords[13] = 2 * (float)scrY1 / pg.height - 1; texCoords[14] = (float)texX1 / width; texCoords[15] = (float)texY1 / height; texData.rewind(); texData.put(texCoords); activeTexture(TEXTURE0); boolean enabledTex = false; if (!texturingIsEnabled(TEXTURE_2D)) { enableTexturing(TEXTURE_2D); enabledTex = true; } bindTexture(TEXTURE_2D, id); bindBuffer(ARRAY_BUFFER, 0); // Making sure that no VBO is bound at this point. texData.position(0); vertexAttribPointer(tex2DVertLoc, 2, FLOAT, false, 4 * SIZEOF_FLOAT, texData); texData.position(2); vertexAttribPointer(tex2DTCoordLoc, 2, FLOAT, false, 4 * SIZEOF_FLOAT, texData); drawArrays(TRIANGLE_STRIP, 0, 4); bindTexture(TEXTURE_2D, 0); if (enabledTex) { disableTexturing(TEXTURE_2D); } disableVertexAttribArray(tex2DVertLoc); disableVertexAttribArray(tex2DTCoordLoc); useProgram(0); if (depthTest[0]) { enable(DEPTH_TEST); } else { disable(DEPTH_TEST); } depthMask(depthMask[0]); } } public void drawTextureRect(int id, int width, int height, int texX0, int texY0, int texX1, int texY1, int scrX0, int scrY0, int scrX1, int scrY1) { if (!loadedTexRectShader || texRectShaderContext.hashCode() != context.hashCode()) { texRectVertShader = createShader(VERTEX_SHADER, texVertShaderSource); texRectFragShader = createShader(FRAGMENT_SHADER, texRectFragShaderSource); if (0 < texRectVertShader && 0 < texRectFragShader) { texRectShaderProgram = createProgram(texRectVertShader, texRectFragShader); } if (0 < texRectShaderProgram) { texRectVertLoc = getAttribLocation(texRectShaderProgram, "inVertex"); texRectTCoordLoc = getAttribLocation(texRectShaderProgram, "inTexcoord"); } loadedTexRectShader = true; texRectShaderContext = context; } if (texData == null) { texData = allocateDirectFloatBuffer(texCoords.length); } if (0 < texRectShaderProgram) { // The texture overwrites anything drawn earlier. boolean[] depthTest = new boolean[1]; getBooleanv(DEPTH_TEST, depthTest, 0); disable(DEPTH_TEST); // When drawing the texture we don't write to the // depth mask, so the texture remains in the background // and can be occluded by anything drawn later, even if // if it is behind it. boolean[] depthMask = new boolean[1]; getBooleanv(DEPTH_WRITEMASK, depthMask, 0); depthMask(false); useProgram(texRectShaderProgram); enableVertexAttribArray(texRectVertLoc); enableVertexAttribArray(texRectTCoordLoc); // Vertex coordinates of the textured quad are specified // in normalized screen space (-1, 1): // Corner 1 texCoords[ 0] = 2 * (float)scrX0 / pg.width - 1; texCoords[ 1] = 2 * (float)scrY0 / pg.height - 1; texCoords[ 2] = texX0; texCoords[ 3] = texY0; // Corner 2 texCoords[ 4] = 2 * (float)scrX1 / pg.width - 1; texCoords[ 5] = 2 * (float)scrY0 / pg.height - 1; texCoords[ 6] = texX1; texCoords[ 7] = texY0; // Corner 3 texCoords[ 8] = 2 * (float)scrX0 / pg.width - 1; texCoords[ 9] = 2 * (float)scrY1 / pg.height - 1; texCoords[10] = texX0; texCoords[11] = texY1; // Corner 4 texCoords[12] = 2 * (float)scrX1 / pg.width - 1; texCoords[13] = 2 * (float)scrY1 / pg.height - 1; texCoords[14] = texX1; texCoords[15] = texY1; texData.rewind(); texData.put(texCoords); activeTexture(TEXTURE0); boolean enabledTex = false; if (!texturingIsEnabled(TEXTURE_RECTANGLE)) { enableTexturing(TEXTURE_RECTANGLE); enabledTex = true; } bindTexture(TEXTURE_RECTANGLE, id); bindBuffer(ARRAY_BUFFER, 0); // Making sure that no VBO is bound at this point. texData.position(0); vertexAttribPointer(texRectVertLoc, 2, FLOAT, false, 4 * SIZEOF_FLOAT, texData); texData.position(2); vertexAttribPointer(texRectTCoordLoc, 2, FLOAT, false, 4 * SIZEOF_FLOAT, texData); drawArrays(TRIANGLE_STRIP, 0, 4); bindTexture(TEXTURE_RECTANGLE, 0); if (enabledTex) { disableTexturing(TEXTURE_RECTANGLE); } disableVertexAttribArray(texRectVertLoc); disableVertexAttribArray(texRectTCoordLoc); useProgram(0); if (depthTest[0]) { enable(DEPTH_TEST); } else { disable(DEPTH_TEST); } depthMask(depthMask[0]); } } public void drawRectangle(float r, float g, float b, float a, int scrX0, int scrY0, int scrX1, int scrY1) { if (!loadedRectShader || rectShaderContext.hashCode() != context.hashCode()) { rectVertShader = createShader(VERTEX_SHADER, rectVertShaderSource); rectFragShader = createShader(FRAGMENT_SHADER, rectFragShaderSource); if (0 < rectVertShader && 0 < rectFragShader) { rectShaderProgram = createProgram(rectVertShader, rectFragShader); } if (0 < rectShaderProgram) { rectVertLoc = getAttribLocation(rectShaderProgram, "inVertex"); rectColorLoc = getUniformLocation(rectShaderProgram, "rectColor"); } rectData = allocateDirectFloatBuffer(rectCoords.length); loadedRectShader = true; rectShaderContext = context; } if (0 < rectShaderProgram) { // The rectangle overwrites anything drawn earlier. boolean[] depthTest = new boolean[1]; getBooleanv(DEPTH_TEST, depthTest, 0); disable(DEPTH_TEST); // When drawing the rectangle we don't write to the // depth mask, so the rectangle remains in the background // and can be occluded by anything drawn later, even if // if it is behind it. boolean[] depthMask = new boolean[1]; getBooleanv(DEPTH_WRITEMASK, depthMask, 0); depthMask(false); useProgram(rectShaderProgram); enableVertexAttribArray(rectVertLoc); uniform4f(rectColorLoc, r, g, b, a); // Vertex coordinates of the rectangle are specified // in normalized screen space (-1, 1): // Corner 1 rectCoords[0] = 2 * (float)scrX0 / pg.width - 1; rectCoords[1] = 2 * (float)scrY0 / pg.height - 1; // Corner 2 rectCoords[2] = 2 * (float)scrX1 / pg.width - 1; rectCoords[3] = 2 * (float)scrY0 / pg.height - 1; // Corner 3 rectCoords[4] = 2 * (float)scrX0 / pg.width - 1; rectCoords[5] = 2 * (float)scrY1 / pg.height - 1; // Corner 4 rectCoords[6] = 2 * (float)scrX1 / pg.width - 1; rectCoords[7] = 2 * (float)scrY1 / pg.height - 1; rectData.rewind(); rectData.put(rectCoords); bindBuffer(ARRAY_BUFFER, 0); // Making sure that no VBO is bound at this point. rectData.position(0); vertexAttribPointer(rectVertLoc, 2, FLOAT, false, 2 * SIZEOF_FLOAT, rectData); drawArrays(TRIANGLE_STRIP, 0, 4); disableVertexAttribArray(rectVertLoc); useProgram(0); if (depthTest[0]) { enable(DEPTH_TEST); } else { disable(DEPTH_TEST); } depthMask(depthMask[0]); } } public int getColorValue(int scrX, int scrY) { if (colorBuffer == null) { colorBuffer = IntBuffer.allocate(1); } colorBuffer.rewind(); readPixels(scrX, pg.height - scrY - 1, 1, 1, RGBA, UNSIGNED_BYTE, colorBuffer); return colorBuffer.get(); } public float getDepthValue(int scrX, int scrY) { if (depthBuffer == null) { depthBuffer = FloatBuffer.allocate(1); } depthBuffer.rewind(); readPixels(scrX, pg.height - scrY - 1, 1, 1, DEPTH_COMPONENT, FLOAT, depthBuffer); return depthBuffer.get(0); } public byte getStencilValue(int scrX, int scrY) { if (stencilBuffer == null) { stencilBuffer = ByteBuffer.allocate(1); } readPixels(scrX, pg.height - scrY - 1, 1, 1, STENCIL_INDEX, GL.GL_UNSIGNED_BYTE, stencilBuffer); return stencilBuffer.get(0); } // bit shifting this might be more efficient public static int nextPowerOfTwo(int val) { int ret = 1; while (ret < val) { ret <<= 1; } return ret; } /** * Converts input native OpenGL value (RGBA on big endian, ABGR on little * endian) to Java ARGB. */ public static int nativeToJavaARGB(int color) { if (BIG_ENDIAN) { // RGBA to ARGB return (color & 0xff000000) | ((color >> 8) & 0x00ffffff); } else { // ABGR to ARGB return (color & 0xff000000) | ((color << 16) & 0xff0000) | (color & 0xff00) | ((color >> 16) & 0xff); } } /** * Converts input array of native OpenGL values (RGBA on big endian, ABGR on little * endian) representing an image of width x height resolution to Java ARGB. * It also rearranges the elements in the array so that the image is flipped * vertically. */ public static void nativeToJavaARGB(int[] pixels, int width, int height) { int index = 0; int yindex = (height - 1) * width; for (int y = 0; y < height / 2; y++) { if (BIG_ENDIAN) { // RGBA to ARGB for (int x = 0; x < width; x++) { int temp = pixels[index]; pixels[index] = (pixels[yindex] & 0xff000000) | ((pixels[yindex] >> 8) & 0x00ffffff); pixels[yindex] = (temp & 0xff000000) | ((temp >> 8) & 0x00ffffff); index++; yindex++; } } else { // ABGR to ARGB for (int x = 0; x < width; x++) { int temp = pixels[index]; pixels[index] = (pixels[yindex] & 0xff000000) | ((pixels[yindex] << 16) & 0xff0000) | (pixels[yindex] & 0xff00) | ((pixels[yindex] >> 16) & 0xff); pixels[yindex] = (temp & 0xff000000) | ((temp << 16) & 0xff0000) | (temp & 0xff00) | ((temp >> 16) & 0xff); index++; yindex++; } } yindex -= width * 2; } // Flips image if ((height % 2) == 1) { index = (height / 2) * width; if (BIG_ENDIAN) { // RGBA to ARGB for (int x = 0; x < width; x++) { pixels[index] = (pixels[index] & 0xff000000) | ((pixels[index] >> 8) & 0x00ffffff); index++; } } else { // ABGR to ARGB for (int x = 0; x < width; x++) { pixels[index] = (pixels[index] & 0xff000000) | ((pixels[index] << 16) & 0xff0000) | (pixels[index] & 0xff00) | ((pixels[index] >> 16) & 0xff); index++; } } } } /** * Converts input native OpenGL value (RGBA on big endian, ABGR on little * endian) to Java RGB, so that the alpha component of the result is set * to opaque (255). */ public static int nativeToJavaRGB(int color) { if (BIG_ENDIAN) { // RGBA to ARGB return ((color << 8) & 0xffffff00) | 0xff; } else { // ABGR to ARGB return 0xff000000 | ((color << 16) & 0xff0000) | (color & 0xff00) | ((color >> 16) & 0xff); } } /** * Converts input array of native OpenGL values (RGBA on big endian, ABGR on little * endian) representing an image of width x height resolution to Java RGB, * so that the alpha component of all pixels is set to opaque (255). It also * rearranges the elements in the array so that the image is flipped vertically. */ public static void nativeToJavaRGB(int[] pixels, int width, int height) { int index = 0; int yindex = (height - 1) * width; for (int y = 0; y < height / 2; y++) { if (BIG_ENDIAN) { // RGBA to ARGB for (int x = 0; x < width; x++) { int temp = pixels[index]; pixels[index] = 0xff000000 | ((pixels[yindex] >> 8) & 0x00ffffff); pixels[yindex] = 0xff000000 | ((temp >> 8) & 0x00ffffff); index++; yindex++; } } else { // ABGR to ARGB for (int x = 0; x < width; x++) { int temp = pixels[index]; pixels[index] = 0xff000000 | ((pixels[yindex] << 16) & 0xff0000) | (pixels[yindex] & 0xff00) | ((pixels[yindex] >> 16) & 0xff); pixels[yindex] = 0xff000000 | ((temp << 16) & 0xff0000) | (temp & 0xff00) | ((temp >> 16) & 0xff); index++; yindex++; } } yindex -= width * 2; } // Flips image if ((height % 2) == 1) { index = (height / 2) * width; if (BIG_ENDIAN) { // RGBA to ARGB for (int x = 0; x < width; x++) { pixels[index] = 0xff000000 | ((pixels[index] >> 8) & 0x00ffffff); index++; } } else { // ABGR to ARGB for (int x = 0; x < width; x++) { pixels[index] = 0xff000000 | ((pixels[index] << 16) & 0xff0000) | (pixels[index] & 0xff00) | ((pixels[index] >> 16) & 0xff); index++; } } } } /** * Converts input Java ARGB value to native OpenGL format (RGBA on big endian, * BGRA on little endian). */ public static int javaToNativeARGB(int color) { if (BIG_ENDIAN) { // ARGB to RGBA return ((color >> 24) & 0xff) | ((color << 8) & 0xffffff00); } else { // ARGB to ABGR return (color & 0xff000000) | ((color << 16) & 0xff0000) | (color & 0xff00) | ((color >> 16) & 0xff); } } /** * Converts input array of Java ARGB values representing an image of width x height * resolution to native OpenGL format (RGBA on big endian, BGRA on little endian). * It also rearranges the elements in the array so that the image is flipped * vertically. */ public static void javaToNativeARGB(int[] pixels, int width, int height) { int index = 0; int yindex = (height - 1) * width; for (int y = 0; y < height / 2; y++) { if (BIG_ENDIAN) { // ARGB to RGBA for (int x = 0; x < width; x++) { int temp = pixels[index]; pixels[index] = ((pixels[yindex] >> 24) & 0xff) | ((pixels[yindex] << 8) & 0xffffff00); pixels[yindex] = ((temp >> 24) & 0xff) | ((temp << 8) & 0xffffff00); index++; yindex++; } } else { // ARGB to ABGR for (int x = 0; x < width; x++) { int temp = pixels[index]; pixels[index] = (pixels[yindex] & 0xff000000) | ((pixels[yindex] << 16) & 0xff0000) | (pixels[yindex] & 0xff00) | ((pixels[yindex] >> 16) & 0xff); pixels[yindex] = (pixels[yindex] & 0xff000000) | ((temp << 16) & 0xff0000) | (temp & 0xff00) | ((temp >> 16) & 0xff); index++; yindex++; } } yindex -= width * 2; } // Flips image if ((height % 2) == 1) { index = (height / 2) * width; if (BIG_ENDIAN) { // ARGB to RGBA for (int x = 0; x < width; x++) { pixels[index] = ((pixels[index] >> 24) & 0xff) | ((pixels[index] << 8) & 0xffffff00); index++; } } else { // ARGB to ABGR for (int x = 0; x < width; x++) { pixels[index] = (pixels[index] & 0xff000000) | ((pixels[index] << 16) & 0xff0000) | (pixels[index] & 0xff00) | ((pixels[index] >> 16) & 0xff); index++; } } } } /** * Converts input Java ARGB value to native OpenGL format (RGBA on big endian, * BGRA on little endian), setting alpha component to opaque (255). */ public static int javaToNativeRGB(int color) { if (BIG_ENDIAN) { // ARGB to RGBA return ((color << 8) & 0xffffff00) | 0xff; } else { // ARGB to ABGR return 0xff000000 | ((color << 16) & 0xff0000) | (color & 0xff00) | ((color >> 16) & 0xff); } } /** * Converts input array of Java ARGB values representing an image of width x height * resolution to native OpenGL format (RGBA on big endian, BGRA on little endian), * while setting alpha component of all pixels to opaque (255). It also rearranges * the elements in the array so that the image is flipped vertically. */ public static void javaToNativeRGB(int[] pixels, int width, int height) { int index = 0; int yindex = (height - 1) * width; for (int y = 0; y < height / 2; y++) { if (BIG_ENDIAN) { // ARGB to RGBA for (int x = 0; x < width; x++) { int temp = pixels[index]; pixels[index] = ((pixels[yindex] << 8) & 0xffffff00) | 0xff; pixels[yindex] = ((temp << 8) & 0xffffff00) | 0xff; index++; yindex++; } } else { for (int x = 0; x < width; x++) { // ARGB to ABGR int temp = pixels[index]; pixels[index] = 0xff000000 | ((pixels[yindex] << 16) & 0xff0000) | (pixels[yindex] & 0xff00) | ((pixels[yindex] >> 16) & 0xff); pixels[yindex] = 0xff000000 | ((temp << 16) & 0xff0000) | (temp & 0xff00) | ((temp >> 16) & 0xff); index++; yindex++; } } yindex -= width * 2; } // Flips image if ((height % 2) == 1) { // ARGB to RGBA index = (height / 2) * width; if (BIG_ENDIAN) { for (int x = 0; x < width; x++) { pixels[index] = ((pixels[index] << 8) & 0xffffff00) | 0xff; index++; } } else { // ARGB to ABGR for (int x = 0; x < width; x++) { pixels[index] = 0xff000000 | ((pixels[index] << 16) & 0xff0000) | (pixels[index] & 0xff00) | ((pixels[index] >> 16) & 0xff); index++; } } } } public int createShader(int shaderType, String source) { int shader = createShader(shaderType); if (shader != 0) { shaderSource(shader, source); compileShader(shader); int[] compiled = new int[1]; getShaderiv(shader, COMPILE_STATUS, compiled, 0); if (compiled[0] == FALSE) { System.err.println("Could not compile shader " + shaderType + ":"); System.err.println(getShaderInfoLog(shader)); deleteShader(shader); shader = 0; } } return shader; } public int createProgram(int vertexShader, int fragmentShader) { int program = createProgram(); if (program != 0) { attachShader(program, vertexShader); attachShader(program, fragmentShader); linkProgram(program); int[] linked = new int[1]; getProgramiv(program, LINK_STATUS, linked, 0); if (linked[0] == FALSE) { System.err.println("Could not link program: "); System.err.println(getProgramInfoLog(program)); deleteProgram(program); program = 0; } } return program; } public boolean validateFramebuffer() { int status = checkFramebufferStatus(FRAMEBUFFER); if (status == FRAMEBUFFER_COMPLETE) { return true; } else if (status == FRAMEBUFFER_INCOMPLETE_ATTACHMENT) { throw new RuntimeException("PFramebuffer: GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT (" + Integer.toHexString(status) + ")"); } else if (status == FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT) { throw new RuntimeException("PFramebuffer: GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT (" + Integer.toHexString(status) + ")"); } else if (status == FRAMEBUFFER_INCOMPLETE_DIMENSIONS) { throw new RuntimeException("PFramebuffer: GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS (" + Integer.toHexString(status) + ")"); } else if (status == FRAMEBUFFER_INCOMPLETE_FORMATS) { throw new RuntimeException("PFramebuffer: GL_FRAMEBUFFER_INCOMPLETE_FORMATS (" + Integer.toHexString(status) + ")"); } else if (status == FRAMEBUFFER_UNSUPPORTED) { throw new RuntimeException("PFramebuffer: GL_FRAMEBUFFER_UNSUPPORTED" + Integer.toHexString(status)); } else { throw new RuntimeException("PFramebuffer: unknown framebuffer error (" + Integer.toHexString(status) + ")"); } } public static ByteBuffer allocateDirectByteBuffer(int size) { return ByteBuffer.allocateDirect(size * SIZEOF_BYTE).order(ByteOrder.nativeOrder()); } public static IntBuffer allocateDirectIntBuffer(int size) { return ByteBuffer.allocateDirect(size * SIZEOF_INT).order(ByteOrder.nativeOrder()).asIntBuffer(); } public static FloatBuffer allocateDirectFloatBuffer(int size) { return ByteBuffer.allocateDirect(size * SIZEOF_FLOAT).order(ByteOrder.nativeOrder()).asFloatBuffer(); } /////////////////////////////////////////////////////////////////////////////////// // Java specific stuff protected class PGLListener implements GLEventListener { @Override public void display(GLAutoDrawable adrawable) { drawable = adrawable; context = adrawable.getContext(); gl = context.getGL(); gl2 = gl.getGL2ES2(); try { gl2x = gl.getGL2(); } catch (javax.media.opengl.GLException e) { gl2x = null; } pg.parent.handleDraw(); } @Override public void dispose(GLAutoDrawable adrawable) { } @Override public void init(GLAutoDrawable adrawable) { drawable = adrawable; context = adrawable.getContext(); } @Override public void reshape(GLAutoDrawable adrawable, int x, int y, int w, int h) { drawable = adrawable; context = adrawable.getContext(); if (glColorFbo[0] != 0) { // The screen FBO hack needs the FBO to be recreated when starting // and after resizing. glColorFbo[0] = 0; } } } /** Animator subclass to drive render loop when using NEWT. **/ protected static class PGLAnimator extends AnimatorBase { private static int count = 0; private Timer timer = null; private TimerTask task = null; private volatile boolean shouldRun; protected String getBaseName(String prefix) { return prefix + "PGLAnimator"; } /** Creates an CustomAnimator with an initial drawable to * animate. */ public PGLAnimator(GLAutoDrawable drawable) { if (drawable != null) { add(drawable); } } public synchronized void requestDisplay() { shouldRun = true; } public final boolean isStarted() { stateSync.lock(); try { return (timer != null); } finally { stateSync.unlock(); } } public final boolean isAnimating() { stateSync.lock(); try { return (timer != null) && (task != null); } finally { stateSync.unlock(); } } private void startTask() { if(null != task) { return; } task = new TimerTask() { private boolean firstRun = true; public void run() { if (firstRun) { Thread.currentThread().setName("PGL-RenderQueue-" + count); firstRun = false; count++; } if (PGLAnimator.this.shouldRun) { PGLAnimator.this.animThread = Thread.currentThread(); // display impl. uses synchronized block on the animator instance display(); synchronized (this) { // done with current frame. shouldRun = false; } } } }; fpsCounter.resetFPSCounter(); shouldRun = false; timer.schedule(task, 0, 1); } public synchronized boolean start() { if (timer != null) { return false; } stateSync.lock(); try { timer = new Timer(); startTask(); } finally { stateSync.unlock(); } return true; } /** Stops this CustomAnimator. */ public synchronized boolean stop() { if (timer == null) { return false; } stateSync.lock(); try { shouldRun = false; if(null != task) { task.cancel(); task = null; } if(null != timer) { timer.cancel(); timer = null; } animThread = null; try { Thread.sleep(20); // ~ 1/60 hz wait, since we can't ctrl stopped threads } catch (InterruptedException e) { } } finally { stateSync.unlock(); } return true; } public final boolean isPaused() { return false; } public synchronized boolean resume() { return false; } public synchronized boolean pause() { return false; } } }