/* -*- mode: jde; c-basic-offset: 2; indent-tabs-mode: nil -*- */ /* Part of the Processing project - http://processing.org Copyright (c) 2004-05 Ben Fry and Casey Reas Copyright (c) 2001-04 Massachusetts Institute of Technology This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ package processing.core; import java.awt.*; import java.awt.image.*; import java.lang.reflect.*; import java.io.*; /** * Storage class for pixel data. *

* Code for copying, resizing, scaling, and blending contributed * by toxi *

* Gaussian blur code contributed by * Mario Klingemann */ public class PImage implements PConstants, Cloneable { /** * Format for this image, one of RGB, ARGB or ALPHA. * note that RGB images still require 0xff in the high byte * because of how they'll be manipulated by other functions */ public int format; public int pixels[]; public int width, height; // would scan line be useful? maybe for pow of 2 gl textures // note! inherited by PGraphics public int imageMode = CORNER; public boolean smooth = false; /** native storage for java 1.3 image object */ //public Object image; /** for subclasses that need to store info about the image */ public Object cache; /** modified portion of the image */ public boolean modified; public int mx1, my1, mx2, my2; // private fields private int fracU, ifU, fracV, ifV, u1, u2, v1, v2, sX, sY, iw, iw1, ih1; private int ul, ll, ur, lr, cUL, cLL, cUR, cLR; private int srcXOffset, srcYOffset; private int r, g, b, a; private int[] srcBuffer; // fixed point precision is limited to 15 bits!! static final int PRECISIONB = 15; static final int PRECISIONF = 1 << PRECISIONB; static final int PREC_MAXVAL = PRECISIONF-1; static final int PREC_ALPHA_SHIFT = 24-PRECISIONB; static final int PREC_RED_SHIFT = 16-PRECISIONB; // internal kernel stuff for the gaussian blur filter int blurRadius; int blurKernelSize; int[] blurKernel; int[][] blurMult; ////////////////////////////////////////////////////////////// /** * Create an empty image object, set its format to RGB. * The pixel array is not allocated. */ public PImage() { format = RGB; // makes sure that this guy is useful cache = null; } /** * Create a new RGB (alpha ignored) image of a specific size. * All pixels are set to zero, meaning black, but since the * alpha is zero, it will be transparent. */ public PImage(int width, int height) { init(width, height, RGB); //this(new int[width * height], width, height, ARGB); // toxi: is it maybe better to init the image with max alpha enabled? //for(int i=0; i * This doesn't take into account *

* Note that when using imageMode(CORNERS), * the x2 and y2 positions are non-inclusive. */ public void updatePixels(int x1, int y1, int x2, int y2) { //if (!modified) { // could just set directly, but.. //} if (imageMode == CORNER) { // x2, y2 are w/h x2 += x1; y2 += y1; } if (!modified) { mx1 = x1; mx2 = x2; my1 = y1; my2 = y2; modified = true; } else { if (x1 < mx1) mx1 = x1; if (x1 > mx2) mx2 = x1; if (y1 < my1) my1 = y1; if (y1 > my2) my2 = y1; if (x2 < mx1) mx1 = x2; if (x2 > mx2) mx2 = x2; if (y2 < my1) my1 = y2; if (y2 > my2) my2 = y2; } } //public void pixelsUpdated() { //mx1 = Integer.MAX_VALUE; //my1 = Integer.MAX_VALUE; //mx2 = -Integer.MAX_VALUE; //my2 = -Integer.MAX_VALUE; //modified = false; //} ////////////////////////////////////////////////////////////// // GET/SET PIXELS /** * Returns an ARGB "color" type (a packed 32 bit int with the color. * If the coordinate is outside the image, zero is returned * (black, but completely transparent). *

* If the image is in RGB format (i.e. on a PVideo object), * the value will get its high bits set, just to avoid cases where * they haven't been set already. *

* If the image is in ALPHA format, this returns a white color * that has its alpha value set. *

* This function is included primarily for beginners. It is quite * slow because it has to check to see if the x, y that was provided * is inside the bounds, and then has to check to see what image * type it is. If you want things to be more efficient, access the * pixels[] array directly. */ public int get(int x, int y) { if ((x < 0) || (y < 0) || (x >= width) || (y >= height)) return 0; switch (format) { case RGB: return pixels[y*width + x] | 0xff000000; case ARGB: return pixels[y*width + x]; case ALPHA: return (pixels[y*width + x] << 24) | 0xffffff; } return 0; } /** * Grab a subsection of a PImage, and copy it into a fresh PImage. * This honors imageMode() for the coordinates. */ public PImage get(int x, int y, int w, int h) { if (imageMode == CORNERS) { // if CORNER, do nothing //x2 += x1; y2 += y1; // w/h are x2/y2 in this case, bring em down to size w = (w - x); h = (h - x); } if (x < 0) { w += x; // clip off the left edge x = 0; } if (y < 0) { h += y; // clip off some of the height y = 0; } if (x + w > width) w = width - x; if (y + h > height) h = height - y; PImage newbie = new PImage(new int[w*h], w, h, format); int index = y*width + x; int index2 = 0; for (int row = y; row < y+h; row++) { System.arraycopy(pixels, index, newbie.pixels, index2, w); index+=width; index2+=w; } return newbie; } /** * Returns a copy of this PImage. Equivalent to get(0, 0, width, height). */ public PImage get() { try { return (PImage) clone(); } catch (CloneNotSupportedException e) { return null; } } /** * Silently ignores if the coordinate is outside the image. */ public void set(int x, int y, int c) { if ((x < 0) || (y < 0) || (x >= width) || (y >= height)) return; pixels[y*width + x] = c; } public void set(int dx, int dy, PImage src) { int sx = 0; int sy = 0; int sw = src.width; int sh = src.height; if (dx < 0) { // off left edge sx -= dx; sw += dx; dx = 0; } if (dy < 0) { // off top edge sy -= dy; sh += dy; dy = 0; } if (dx + sw > width) { // off right edge sw = width - dx; } if (dy + sh > height) { // off bottom edge sh = height - dy; } // this could be nonexistant if ((sw <= 0) || (sh <= 0)) return; setImpl(dx, dy, sx, sy, sw, sh, src); } /** * Internal function to actually handle setting a block of pixels that * has already been properly cropped from the image to a valid region. */ protected void setImpl(int dx, int dy, int sx, int sy, int sw, int sh, PImage src) { int srcOffset = sy * src.width + sx; int dstOffset = dy * width + dx; for (int y = sy; y < sy + sh; y++) { System.arraycopy(src.pixels, srcOffset, pixels, dstOffset, sw); srcOffset += src.width; dstOffset += width; } } ////////////////////////////////////////////////////////////// // ALPHA CHANNEL /** * Set alpha channel for an image. Black colors in the source * image will make the destination image completely transparent, * and white will make things fully opaque. Gray values will * be in-between steps. *

* Strictly speaking the "blue" value from the source image is * used as the alpha color. For a fully grayscale image, this * is correct, but for a color image it's not 100% accurate. * For a more accurate conversion, first use filter(GRAY) * which will make the image into a "correct" grayscake by * performing a proper luminance-based conversion. */ public void mask(int alpha[]) { // don't execute if mask image is different size if (alpha.length != pixels.length) { throw new RuntimeException("The PImage used with mask() must be " + "the same size as the applet."); } for (int i = 0; i < pixels.length; i++) { pixels[i] = ((alpha[i] & 0xff) << 24) | (pixels[i] & 0xffffff); } format = ARGB; } /** * Set alpha channel for an image using another image as the source. */ public void mask(PImage alpha) { mask(alpha.pixels); } /** * Method to apply a variety of basic filters to this image. *

*

* * Gaussian blur code contributed by Mario Klingemann * http://incubator.quasimondo.com */ public void filter(int kind) { switch (kind) { case BLUR: // TODO write basic low-pass filter blur here // what does photoshop do on the edges with this guy? // better yet.. why bother? just use gaussian with radius 1 filter(BLUR, 1); break; case GRAY: // Converts RGB image data into grayscale using // weighted RGB components, and keeps alpha channel intact. // [toxi 040115] for (int i = 0; i < pixels.length; i++) { int col = pixels[i]; // luminance = 0.3*red + 0.59*green + 0.11*blue // 0.30 * 256 = 77 // 0.59 * 256 = 151 // 0.11 * 256 = 28 int lum = (77*(col>>16&0xff) + 151*(col>>8&0xff) + 28*(col&0xff))>>8; pixels[i] = (col & ALPHA_MASK) | lum<<16 | lum<<8 | lum; } break; case INVERT: for (int i = 0; i < pixels.length; i++) { //pixels[i] = 0xff000000 | pixels[i] ^= 0xffffff; } break; case POSTERIZE: throw new RuntimeException("Use filter(POSTERIZE, int levels) " + "instead of filter(POSTERIZE)"); case RGB: for (int i = 0; i < pixels.length; i++) { pixels[i] |= 0xff000000; } format = RGB; break; case THRESHOLD: filter(THRESHOLD, 0.5f); break; } updatePixels(); // mark as modified } /** * Method to apply a variety of basic filters to this image. * These filters all take a parameter. *

*

* * Gaussian blur code contributed by Mario Klingemann * http://incubator.quasimondo.com */ public void filter(int kind, float param) { switch (kind) { case BLUR: blur(param); break; case GRAY: throw new RuntimeException("Use filter(GRAY) instead of " + "filter(GRAY, param)"); case INVERT: throw new RuntimeException("Use filter(INVERT) instead of " + "filter(INVERT, param)"); case OPAQUE: throw new RuntimeException("Use filter(OPAQUE) instead of " + "filter(OPAQUE, param)"); case POSTERIZE: int levels = (int)param; if ((levels < 2) || (levels > 255)) { throw new RuntimeException("Levels must be between 2 and 255 for " + "filter(POSTERIZE, levels)"); } // TODO not optimized int levels256 = 256 / levels; int levels1 = levels - 1; for (int i = 0; i < pixels.length; i++) { int rlevel = ((pixels[i] >> 16) & 0xff) / levels256; int glevel = ((pixels[i] >> 8) & 0xff) / levels256; int blevel = (pixels[i] & 0xff) / levels256; rlevel = (rlevel * 255 / levels1) & 0xff; glevel = (glevel * 255 / levels1) & 0xff; blevel = (blevel * 255 / levels1) & 0xff; pixels[i] = ((0xff000000 & pixels[i]) | (rlevel << 16) | (glevel << 8) | blevel); } break; case THRESHOLD: // greater than or equal to the threshold int thresh = (int) (param * 255); for (int i = 0; i < pixels.length; i++) { int max = Math.max((pixels[i] & RED_MASK) >> 16, Math.max((pixels[i] & GREEN_MASK) >> 8, (pixels[i] & BLUE_MASK))); pixels[i] = (pixels[i] & ALPHA_MASK) | ((max < thresh) ? 0x000000 : 0xffffff); } break; } updatePixels(); // mark as modified } protected void blur(float r) { // adjustment to make this algorithm // similar to photoshop's gaussian blur settings int radius = (int) (r * 3.5f); radius = (radius < 1) ? 1 : ((radius < 248) ? radius : 248); //radius = min(Math.max(1, radius), 248); if (blurRadius != radius) { // it's actually a little silly to cache this stuff // when all the cost is gonna come from allocating 2x the // image size in r1[] and r2[] et al. blurRadius = radius; blurKernelSize = 1 + radius*2; blurKernel = new int[blurKernelSize]; //1 + radius*2]; blurMult = new int[blurKernelSize][256]; //new int[1+radius*2][256]; int sum = 0; for (int i = 1; i < radius; i++) { int radiusi = radius - i; blurKernel[radius+i] = blurKernel[radiusi] = radiusi * radiusi; sum += blurKernel[radiusi] + blurKernel[radiusi]; for (int j = 0; j < 256; j++) { blurMult[radius+i][j] = blurMult[radiusi][j] = blurKernel[radiusi]*j; } } blurKernel[radius] = radius * radius; sum += blurKernel[radius]; for (int j = 0; j < 256; j++) { blurMult[radius][j] = blurKernel[radius]*j; } } //void blur(BImage img,int x, int y,int w,int h){ int sum, cr, cg, cb, k; int pixel, read, ri, xl, yl, ym, riw; //int[] pix=img.pixels; //int iw=img.width; int wh = width * height; int r1[] = new int[wh]; int g1[] = new int[wh]; int b1[] = new int[wh]; for (int i = 0; i < wh; i++) { ri = pixels[i]; r1[i] = (ri & 0xff0000) >> 16; g1[i] = (ri & 0x00ff00) >> 8; b1[i] = (ri & 0x0000ff); } int r2[] = new int[wh]; int g2[] = new int[wh]; int b2[] = new int[wh]; int x = 0; //Math.max(0, x); int y = 0; //Math.max(0, y); int w = width; // x + w - Math.max(0, (x+w)-width); int h = height; //y + h - Math.max(0, (y+h)-height); int yi = y*width; for (yl = y; yl < h; yl++) { for (xl = x; xl < w; xl++) { cb = cg = cr = sum = 0; ri = xl - blurRadius; for (int i = 0; i < blurKernelSize; i++) { read = ri + i; if ((read >= x) && (read < w)) { read += yi; cr += blurMult[i][r1[read]]; cg += blurMult[i][g1[read]]; cb += blurMult[i][b1[read]]; sum += blurKernel[i]; } } ri = yi + xl; r2[ri] = cr / sum; g2[ri] = cg / sum; b2[ri] = cb / sum; } yi += width; } yi = y * width; for (yl = y; yl < h; yl++) { ym = yl - blurRadius; riw = ym * width; for (xl = x; xl < w; xl++) { cb = cg = cr = sum = 0; ri = ym; read = xl + riw; for (int i = 0; i < blurKernelSize; i++) { if ((ri < h) && (ri >= y)) { cr += blurMult[i][r2[read]]; cg += blurMult[i][g2[read]]; cb += blurMult[i][b2[read]]; sum += blurKernel[i]; } ri++; read += width; } pixels[xl+yi] = 0xff000000 | (cr/sum)<<16 | (cg/sum)<<8 | (cb/sum); } yi += width; } } ////////////////////////////////////////////////////////////// // REPLICATING & BLENDING (AREAS) OF PIXELS /** * Copy things from one area of this image * to another area in the same image. */ public void copy(int sx1, int sy1, int sx2, int sy2, int dx1, int dy1, int dx2, int dy2) { copy(this, sx1, sy1, sx2, sy2, dx1, dy1, dx2, dy2); } /** * Copies area of one image into another PImage object. */ public void copy(PImage src, int sx1, int sy1, int sx2, int sy2, int dx1, int dy1, int dx2, int dy2) { if (imageMode == CORNER) { // if CORNERS, do nothing sx2 += sx1; sy2 += sy1; dx2 += dx1; dy2 += dy1; //} else if (imageMode == CENTER) { //sx2 /= 2f; sy2 /= 2f; //dx2 /= 2f; dy2 /= 2f; } if ((src == this) && intersect(sx1, sy1, sx2, sy2, dx1, dy1, dx2, dy2)) { // if src is me, and things intersect, make a copy of the data blit_resize(get(sx1, sy1, sx2 - sx1, sy2 - sy1), 0, 0, sx2 - sx1 - 1, sy2 - sy1 - 1, pixels, width, height, dx1, dy1, dx2, dy2, REPLACE); } else { blit_resize(src, sx1, sy1, sx2, sy2, pixels, width, height, dx1, dy1, dx2, dy2, REPLACE); } } /** * Blend a two colors based on a particular mode. *
   * BLEND - linear interpolation of colours: C = A*factor + B
   * ADD - additive blending with white clip: C = min(A*factor + B, 255)
   * SUBSTRACT - substractive blending with black clip: C = max(B - A*factor, 0)
   * DARKEST - only the darkest colour succeeds: C = min(A*factor, B)
   * LIGHTEST - only the lightest colour succeeds: C = max(A*factor, B)
   * REPLACE - destination colour equals colour of source pixel: C = A
   * 
*/ static public int blend(int c1, int c2, int mode) { switch (mode) { case BLEND: return blend_multiply(c1, c2); case ADD: return blend_add_pin(c1, c2); case SUBTRACT: return blend_sub_pin(c1, c2); case LIGHTEST: return blend_lightest(c1, c2); case DARKEST: return blend_darkest(c1, c2); case REPLACE: return c2; } return 0; } /** * Copies and blends 1 pixel with MODE to pixel in this image. */ public void blend(int sx, int sy, int dx, int dy, int mode) { if ((dx >= 0) && (dx < width) && (sx >= 0) && (sx < width) && (dy >= 0) && (dy < height) && (sy >= 0) && (sy < height)) { pixels[dy * width + dx] = blend(pixels[dy * width + dx], pixels[sy * width + sx], mode); } } /** * Copies and blends 1 pixel with MODE to pixel in another image */ public void blend(PImage src, int sx, int sy, int dx, int dy, int mode) { if ((dx >= 0) && (dx < width) && (sx >= 0) && (sx < src.width) && (dy >= 0) && (dy < height) && (sy >= 0) && (sy < src.height)) { pixels[dy * width + dx] = blend(pixels[dy * width + dx], src.pixels[sy * src.width + sx], mode); } } /** * Blends one area of this image to another area */ public void blend(int sx1, int sy1, int sx2, int sy2, int dx1, int dy1, int dx2, int dy2, int mode) { blend(this, sx1, sy1, sx2, sy2, dx1, dy1, dx2, dy2, mode); } /** * Copies area of one image into another PImage object */ public void blend(PImage src, int sx1, int sy1, int sx2, int sy2, int dx1, int dy1, int dx2, int dy2, int mode) { if (imageMode == CORNER) { // if CORNERS, do nothing sx2 += sx1; sy2 += sy1; dx2 += dx1; dy2 += dy1; //} else if (imageMode == CENTER) { //sx2 /= 2f; sy2 /= 2f; //dx2 /= 2f; dy2 /= 2f; } if ((src == this) && intersect(sx1, sy1, sx2, sy2, dx1, dy1, dx2, dy2)) { blit_resize(get(sx1, sy1, sx2 - sx1, sy2 - sy1), 0, 0, sx2 - sx1 - 1, sy2 - sy1 - 1, pixels, width, height, dx1, dy1, dx2, dy2, mode); } else { blit_resize(src, sx1, sy1, sx2, sy2, pixels, width, height, dx1, dy1, dx2, dy2, mode); } } /** * Check to see if two rectangles intersect one another */ protected boolean intersect(int sx1, int sy1, int sx2, int sy2, int dx1, int dy1, int dx2, int dy2) { int sw = sx2 - sx1 + 1; int sh = sy2 - sy1 + 1; int dw = dx2 - dx1 + 1; int dh = dy2 - dy1 + 1; if (dx1 < sx1) { dw += dx1 - sx1; if (dw > sw) { dw = sw; } } else { int w = sw + sx1 - dx1; if (dw > w) { dw = w; } } if (dy1 < sy1) { dh += dy1 - sy1; if (dh > sh) { dh = sh; } } else { int h = sh + sy1 - dy1; if (dh > h) { dh = h; } } return !(dw <= 0 || dh <= 0); } ////////////////////////////////////////////////////////////// // COPYING IMAGE DATA /** * Duplicate an image, returns new PImage object. * The pixels[] array for the new object will be unique * and recopied from the source image. */ public Object clone() throws CloneNotSupportedException { // ignore PImage c = (PImage) super.clone(); // super.clone() will only copy the reference to the pixels // array, so this will do a proper duplication of it instead. c.pixels = new int[width * height]; System.arraycopy(pixels, 0, c.pixels, 0, pixels.length); // return the goods return c; } ////////////////////////////////////////////////////////////// /** * Internal blitter/resizer/copier from toxi. * Uses bilinear filtering if smooth() has been enabled * 'mode' determines the blending mode used in the process. */ private void blit_resize(PImage img, int srcX1, int srcY1, int srcX2, int srcY2, int[] destPixels, int screenW, int screenH, int destX1, int destY1, int destX2, int destY2, int mode) { if (srcX1 < 0) srcX1 = 0; if (srcY1 < 0) srcY1 = 0; if (srcX2 >= img.width) srcX2 = img.width - 1; if (srcY2 >= img.width) srcY2 = img.height - 1; int srcW = srcX2 - srcX1; int srcH = srcY2 - srcY1; int destW = destX2 - destX1; int destH = destY2 - destY1; if (!smooth) { srcW++; srcH++; } if (destW <= 0 || destH <= 0 || srcW <= 0 || srcH <= 0 || destX1 >= screenW || destY1 >= screenH || srcX1 >= img.width || srcY1 >= img.height) { return; } int dx = (int) (srcW / (float) destW * PRECISIONF); int dy = (int) (srcH / (float) destH * PRECISIONF); srcXOffset = (int) (destX1 < 0 ? -destX1 * dx : srcX1 * PRECISIONF); srcYOffset = (int) (destY1 < 0 ? -destY1 * dy : srcY1 * PRECISIONF); if (destX1 < 0) { destW += destX1; destX1 = 0; } if (destY1 < 0) { destH += destY1; destY1 = 0; } destW = low(destW, screenW - destX1); destH = low(destH, screenH - destY1); int destOffset = destY1 * screenW + destX1; srcBuffer = img.pixels; if (smooth) { // use bilinear filtering iw = img.width; iw1 = img.width - 1; ih1 = img.height - 1; switch (mode) { case BLEND: for (int y = 0; y < destH; y++) { filter_new_scanline(); for (int x = 0; x < destW; x++) { destPixels[destOffset + x] = blend_multiply(destPixels[destOffset + x], filter_bilinear()); sX += dx; } destOffset += screenW; srcYOffset += dy; } break; case ADD: for (int y = 0; y < destH; y++) { filter_new_scanline(); for (int x = 0; x < destW; x++) { destPixels[destOffset + x] = blend_add_pin(destPixels[destOffset + x], filter_bilinear()); sX += dx; } destOffset += screenW; srcYOffset += dy; } break; case SUBTRACT: for (int y = 0; y < destH; y++) { filter_new_scanline(); for (int x = 0; x < destW; x++) { destPixels[destOffset + x] = blend_sub_pin(destPixels[destOffset + x], filter_bilinear()); sX += dx; } destOffset += screenW; srcYOffset += dy; } break; case LIGHTEST: for (int y = 0; y < destH; y++) { filter_new_scanline(); for (int x = 0; x < destW; x++) { destPixels[destOffset + x] = blend_lightest(destPixels[destOffset + x], filter_bilinear()); sX += dx; } destOffset += screenW; srcYOffset += dy; } break; case DARKEST: for (int y = 0; y < destH; y++) { filter_new_scanline(); for (int x = 0; x < destW; x++) { destPixels[destOffset + x] = blend_darkest(destPixels[destOffset + x], filter_bilinear()); sX += dx; } destOffset += screenW; srcYOffset += dy; } break; case REPLACE: for (int y = 0; y < destH; y++) { filter_new_scanline(); for (int x = 0; x < destW; x++) { destPixels[destOffset + x] = filter_bilinear(); sX += dx; } destOffset += screenW; srcYOffset += dy; } break; } } else { // nearest neighbour scaling (++fast!) switch (mode) { case BLEND: for (int y = 0; y < destH; y++) { sX = srcXOffset; sY = (srcYOffset >> PRECISIONB) * img.width; for (int x = 0; x < destW; x++) { destPixels[destOffset + x] = blend_multiply(destPixels[destOffset + x], srcBuffer[sY + (sX >> PRECISIONB)]); sX += dx; } destOffset += screenW; srcYOffset += dy; } break; case ADD: for (int y = 0; y < destH; y++) { sX = srcXOffset; sY = (srcYOffset >> PRECISIONB) * img.width; for (int x = 0; x < destW; x++) { destPixels[destOffset + x] = blend_add_pin(destPixels[destOffset + x], srcBuffer[sY + (sX >> PRECISIONB)]); sX += dx; } destOffset += screenW; srcYOffset += dy; } break; case SUBTRACT: for (int y = 0; y < destH; y++) { sX = srcXOffset; sY = (srcYOffset >> PRECISIONB) * img.width; for (int x = 0; x < destW; x++) { destPixels[destOffset + x] = blend_sub_pin(destPixels[destOffset + x], srcBuffer[sY + (sX >> PRECISIONB)]); sX += dx; } destOffset += screenW; srcYOffset += dy; } break; case LIGHTEST: for (int y = 0; y < destH; y++) { sX = srcXOffset; sY = (srcYOffset >> PRECISIONB) * img.width; for (int x = 0; x < destW; x++) { destPixels[destOffset + x] = blend_lightest(destPixels[destOffset + x], srcBuffer[sY + (sX >> PRECISIONB)]); sX += dx; } destOffset += screenW; srcYOffset += dy; } break; case DARKEST: for (int y = 0; y < destH; y++) { sX = srcXOffset; sY = (srcYOffset >> PRECISIONB) * img.width; for (int x = 0; x < destW; x++) { destPixels[destOffset + x] = blend_darkest(destPixels[destOffset + x], srcBuffer[sY + (sX >> PRECISIONB)]); sX += dx; } destOffset += screenW; srcYOffset += dy; } break; case REPLACE: for (int y = 0; y < destH; y++) { sX = srcXOffset; sY = (srcYOffset >> PRECISIONB) * img.width; for (int x = 0; x < destW; x++) { destPixels[destOffset + x] = srcBuffer[sY + (sX >> PRECISIONB)]; sX += dx; } destOffset += screenW; srcYOffset += dy; } break; } } } private void filter_new_scanline() { sX = srcXOffset; fracV = srcYOffset & PREC_MAXVAL; ifV = PREC_MAXVAL - fracV; v1 = (srcYOffset >> PRECISIONB) * iw; v2 = low((srcYOffset >> PRECISIONB) + 1, ih1) * iw; } private int filter_bilinear() { fracU = sX & PREC_MAXVAL; ifU = PREC_MAXVAL - fracU; ul = (ifU * ifV) >> PRECISIONB; ll = (ifU * fracV) >> PRECISIONB; ur = (fracU * ifV) >> PRECISIONB; lr = (fracU * fracV) >> PRECISIONB; u1 = (sX >> PRECISIONB); u2 = low(u1 + 1, iw1); // get color values of the 4 neighbouring texels cUL = srcBuffer[v1 + u1]; cUR = srcBuffer[v1 + u2]; cLL = srcBuffer[v2 + u1]; cLR = srcBuffer[v2 + u2]; r = ((ul*((cUL&RED_MASK)>>16) + ll*((cLL&RED_MASK)>>16) + ur*((cUR&RED_MASK)>>16) + lr*((cLR&RED_MASK)>>16)) << PREC_RED_SHIFT) & RED_MASK; g = ((ul*(cUL&GREEN_MASK) + ll*(cLL&GREEN_MASK) + ur*(cUR&GREEN_MASK) + lr*(cLR&GREEN_MASK)) >>> PRECISIONB) & GREEN_MASK; b = (ul*(cUL&BLUE_MASK) + ll*(cLL&BLUE_MASK) + ur*(cUR&BLUE_MASK) + lr*(cLR&BLUE_MASK)) >>> PRECISIONB; a = ((ul*((cUL&ALPHA_MASK)>>>24) + ll*((cLL&ALPHA_MASK)>>>24) + ur*((cUR&ALPHA_MASK)>>>24) + lr*((cLR&ALPHA_MASK)>>>24)) << PREC_ALPHA_SHIFT) & ALPHA_MASK; return a | r | g | b; } ////////////////////////////////////////////////////////////// // internal blending methods private static int low(int a, int b) { return (a < b) ? a : b; } private static int high(int a, int b) { return (a > b) ? a : b; } private static float frac(float x) { return (x - (int) x); } /** * generic linear interpolation */ private static int mix(int a, int b, int f) { return a + (((b - a) * f) >> 8); } ///////////////////////////////////////////////////////////// // BLEND MODE IMPLEMENTIONS private static int blend_multiply(int a, int b) { int f = (b & ALPHA_MASK) >>> 24; return (low(((a & ALPHA_MASK) >>> 24) + f, 0xff) << 24 | mix(a & RED_MASK, b & RED_MASK, f) & RED_MASK | mix(a & GREEN_MASK, b & GREEN_MASK, f) & GREEN_MASK | mix(a & BLUE_MASK, b & BLUE_MASK, f)); } /** * additive blend with clipping */ private static int blend_add_pin(int a, int b) { int f = (b & ALPHA_MASK) >>> 24; return (low(((a & ALPHA_MASK) >>> 24) + f, 0xff) << 24 | low(((a & RED_MASK) + ((b & RED_MASK) >> 8) * f), RED_MASK) & RED_MASK | low(((a & GREEN_MASK) + ((b & GREEN_MASK) >> 8) * f), GREEN_MASK) & GREEN_MASK | low((a & BLUE_MASK) + (((b & BLUE_MASK) * f) >> 8), BLUE_MASK)); } /** * subtractive blend with clipping */ private static int blend_sub_pin(int a, int b) { int f = (b & ALPHA_MASK) >>> 24; return (low(((a & ALPHA_MASK) >>> 24) + f, 0xff) << 24 | high(((a & RED_MASK) - ((b & RED_MASK) >> 8) * f), GREEN_MASK) & RED_MASK | high(((a & GREEN_MASK) - ((b & GREEN_MASK) >> 8) * f), BLUE_MASK) & GREEN_MASK | high((a & BLUE_MASK) - (((b & BLUE_MASK) * f) >> 8), 0)); } /** * only returns the blended lightest colour */ private static int blend_lightest(int a, int b) { int f = (b & ALPHA_MASK) >>> 24; return (low(((a & ALPHA_MASK) >>> 24) + f, 0xff) << 24 | high(a & RED_MASK, ((b & RED_MASK) >> 8) * f) & RED_MASK | high(a & GREEN_MASK, ((b & GREEN_MASK) >> 8) * f) & GREEN_MASK | high(a & BLUE_MASK, ((b & BLUE_MASK) * f) >> 8)); } /** * only returns the blended darkest colour */ private static int blend_darkest(int a, int b) { int f = (b & ALPHA_MASK) >>> 24; return (low(((a & ALPHA_MASK) >>> 24) + f, 0xff) << 24 | mix(a & RED_MASK, low(a & RED_MASK, ((b & RED_MASK) >> 8) * f), f) & RED_MASK | mix(a & GREEN_MASK, low(a & GREEN_MASK, ((b & GREEN_MASK) >> 8) * f), f) & GREEN_MASK | mix(a & BLUE_MASK, low(a & BLUE_MASK, ((b & BLUE_MASK) * f) >> 8), f)); } ////////////////////////////////////////////////////////////// // FILE I/O static byte tiff_header[] = { 77, 77, 0, 42, 0, 0, 0, 8, 0, 9, 0, -2, 0, 4, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 3, 0, 0, 0, 1, 0, 0, 0, 0, 1, 2, 0, 3, 0, 0, 0, 3, 0, 0, 0, 122, 1, 6, 0, 3, 0, 0, 0, 1, 0, 2, 0, 0, 1, 17, 0, 4, 0, 0, 0, 1, 0, 0, 3, 0, 1, 21, 0, 3, 0, 0, 0, 1, 0, 3, 0, 0, 1, 22, 0, 3, 0, 0, 0, 1, 0, 0, 0, 0, 1, 23, 0, 4, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 8, 0, 8 }; static public boolean saveHeaderTIFF(OutputStream output, int width, int height) { try { byte tiff[] = new byte[768]; System.arraycopy(tiff_header, 0, tiff, 0, tiff_header.length); tiff[30] = (byte) ((width >> 8) & 0xff); tiff[31] = (byte) ((width) & 0xff); tiff[42] = tiff[102] = (byte) ((height >> 8) & 0xff); tiff[43] = tiff[103] = (byte) ((height) & 0xff); int count = width*height*3; tiff[114] = (byte) ((count >> 24) & 0xff); tiff[115] = (byte) ((count >> 16) & 0xff); tiff[116] = (byte) ((count >> 8) & 0xff); tiff[117] = (byte) ((count) & 0xff); output.write(tiff); return true; } catch (IOException e) { e.printStackTrace(); } return false; } static public boolean saveTIFF(OutputStream output, int pixels[], int width, int height) { try { if (!saveHeaderTIFF(output, width, height)) { return false; } for (int i = 0; i < pixels.length; i++) { output.write((pixels[i] >> 16) & 0xff); output.write((pixels[i] >> 8) & 0xff); output.write(pixels[i] & 0xff); } output.flush(); return true; } catch (IOException e) { e.printStackTrace(); } return false; } // original TGA export method // now replaced with version using RLE compression (see below) /* static public boolean saveHeaderTGA(OutputStream output, int width, int height) { try { byte header[] = new byte[18]; // set header info header[2] = 0x02; header[12] = (byte) (width & 0xff); header[13] = (byte) (width >> 8); header[14] = (byte) (height & 0xff); header[15] = (byte) (height >> 8); header[16] = 32; // bits per pixel header[17] = 8; // bits per colour component output.write(header); return true; } catch (IOException e) { e.printStackTrace(); } return false; } static public boolean saveTGA(OutputStream output, int pixels[], int width, int height) { try { if (!saveHeaderTGA(output, width, height)) { return false; } int index = (height-1) * width; for (int y = height-1; y >= 0; y--) { for (int x = 0; x < width; x++) { int col = pixels[index + x]; output.write(col & 0xff); output.write(col >> 8 & 0xff); output.write(col >> 16 & 0xff); output.write(col >>> 24 & 0xff); } index -= width; } output.flush(); return true; } catch (IOException e) { e.printStackTrace(); } return false; } */ /** * Creates a Targa32 formatted byte sequence of specified * pixel buffer now using RLE compression * spec used: http://www.wotsit.org/download.asp?f=tga *

* Also figured out how to avoid parsing the image upside-down * (there's a header flag to set the image origin to top-left) *

* Contributed by toxi 8 May 2005 */ static public boolean saveTGA(OutputStream output, int pixels[], int width, int height) { try { byte header[] = new byte[18]; // set header info header[2] = 0x02+0x08; // RGBA + RLE Compression header[12] = (byte) (width & 0xff); header[13] = (byte) (width >> 8); header[14] = (byte) (height & 0xff); header[15] = (byte) (height >> 8); // bits per pixel header[16] = 32; // bits per colour component + origin at top-left header[17] = 0x08+0x20; output.write(header); int maxLen = height * width; int index = 0; int col, prevCol; int[] currPack = new int[128]; while (index1); // set flag for RLE parcel break; } rle++; } // write compressed chunk (bit 7 = 1, bit 6-0 = runlength-1) if (isRLE) { output.write(0x80 | (rle-1)); output.write(col & 0xff); output.write(col >> 8 & 0xff); output.write(col >> 16 & 0xff); output.write(col >>> 24 & 0xff); } else { rle = 1; while(index + rle> 8 & 0xff); output.write(col >> 16 & 0xff); output.write(col >>> 24 & 0xff); } } index += rle; } output.flush(); return true; } catch (IOException e) { e.printStackTrace(); // exception will be thrown below return false; } } public void save(String filename) { // ignore boolean success = false; try { OutputStream os = null; if (filename.toLowerCase().endsWith(".tga")) { os = new BufferedOutputStream(new FileOutputStream(filename), 32768); success = saveTGA(os, pixels, width, height); } else { if (!filename.toLowerCase().endsWith(".tif") && !filename.toLowerCase().endsWith(".tiff")) { // if no .tif extension, add it.. filename += ".tif"; } os = new BufferedOutputStream(new FileOutputStream(filename), 32768); success = saveTIFF(os, pixels, width, height); } os.flush(); os.close(); } catch (IOException e) { //System.err.println("Error while saving image."); e.printStackTrace(); success = false; } if (!success) { throw new RuntimeException("Error while saving image."); } } }