import processing.core.*; import java.applet.*; import java.awt.*; import java.awt.image.*; import java.awt.event.*; import java.io.*; import java.net.*; import java.text.*; import java.util.*; import java.util.zip.*; import java.util.regex.*; public class Wolfram extends PApplet { /** * Wolfram Cellular Automata * by Daniel Shiffman. * * Simple demonstration of a Wolfram 1-dimensional cellular automata * When the system reaches bottom of the window, it restarts with a new ruleset * Mouse click restarts as well. */ CA ca; // An instance object to describe the Wolfram basic Cellular Automata public void setup() { size(640, 360, P2D); frameRate(30); background(0); int[] ruleset = {0,1,0,1,1,0,1,0}; // An initial rule system ca = new CA(ruleset); // Initialize CA } public void draw() { ca.render(); // Draw the CA ca.generate(); // Generate the next level if (ca.finished()) { // If we're done, clear the screen, pick a new ruleset and restart background(0); ca.randomize(); ca.restart(); } } public void mousePressed() { background(0); ca.randomize(); ca.restart(); } class CA { int[] cells; // An array of 0s and 1s int generation; // How many generations? int scl; // How many pixels wide/high is each cell? int[] rules; // An array to store the ruleset, for example {0,1,1,0,1,1,0,1} CA(int[] r) { rules = r; scl = 1; cells = new int[width/scl]; restart(); } CA() { scl = 1; cells = new int[width/scl]; randomize(); restart(); } // Set the rules of the CA public void setRules(int[] r) { rules = r; } // Make a random ruleset public void randomize() { for (int i = 0; i < 8; i++) { rules[i] = PApplet.parseInt(random(2)); } } // Reset to generation 0 public void restart() { for (int i = 0; i < cells.length; i++) { cells[i] = 0; } cells[cells.length/2] = 1; // We arbitrarily start with just the middle cell having a state of "1" generation = 0; } // The process of creating the new generation public void generate() { // First we create an empty array for the new values int[] nextgen = new int[cells.length]; // For every spot, determine new state by examing current state, and neighbor states // Ignore edges that only have one neighor for (int i = 1; i < cells.length-1; i++) { int left = cells[i-1]; // Left neighbor state int me = cells[i]; // Current state int right = cells[i+1]; // Right neighbor state nextgen[i] = rules(left,me,right); // Compute next generation state based on ruleset } // Copy the array into current value cells = (int[]) nextgen.clone(); generation++; } // This is the easy part, just draw the cells, fill 255 for '1', fill 0 for '0' public void render() { for (int i = 0; i < cells.length; i++) { if (cells[i] == 1) fill(255); else fill(0); noStroke(); rect(i*scl,generation*scl, scl,scl); } } // Implementing the Wolfram rules // Could be improved and made more concise, but here we can explicitly see what is going on for each case public int rules (int a, int b, int c) { if (a == 1 && b == 1 && c == 1) return rules[0]; if (a == 1 && b == 1 && c == 0) return rules[1]; if (a == 1 && b == 0 && c == 1) return rules[2]; if (a == 1 && b == 0 && c == 0) return rules[3]; if (a == 0 && b == 1 && c == 1) return rules[4]; if (a == 0 && b == 1 && c == 0) return rules[5]; if (a == 0 && b == 0 && c == 1) return rules[6]; if (a == 0 && b == 0 && c == 0) return rules[7]; return 0; } // The CA is done if it reaches the bottom of the screen public boolean finished() { if (generation > height/scl) { return true; } else { return false; } } } static public void main(String args[]) { PApplet.main(new String[] { "Wolfram" }); } }