mirror of
https://github.com/processing/processing4.git
synced 2026-01-28 02:41:08 +01:00
141 lines
4.0 KiB
Plaintext
141 lines
4.0 KiB
Plaintext
/**
|
|
* Circle Collision with Swapping Velocities
|
|
* by Ira Greenberg.
|
|
*
|
|
* Based on Keith Peter's Solution in
|
|
* Foundation Actionscript Animation: Making Things Move!
|
|
*/
|
|
|
|
|
|
Ball[] balls = {
|
|
new Ball(100, 400, 20),
|
|
new Ball(700, 400, 80)
|
|
};
|
|
|
|
PVector[] vels = {
|
|
new PVector(2.15, -1.35),
|
|
new PVector(-1.65, .42)
|
|
};
|
|
|
|
void setup() {
|
|
size(640, 360);
|
|
noStroke();
|
|
}
|
|
|
|
void draw() {
|
|
background(51);
|
|
fill(204);
|
|
for (int i = 0; i < 2; i++){
|
|
balls[i].x += vels[i].x;
|
|
balls[i].y += vels[i].y;
|
|
ellipse(balls[i].x, balls[i].y, balls[i].r*2, balls[i].r*2);
|
|
checkBoundaryCollision(balls[i], vels[i]);
|
|
}
|
|
checkObjectCollision(balls, vels);
|
|
}
|
|
|
|
void checkObjectCollision(Ball[] b, PVector[] v){
|
|
|
|
// get distances between the balls components
|
|
PVector bVect = new PVector();
|
|
bVect.x = b[1].x - b[0].x;
|
|
bVect.y = b[1].y - b[0].y;
|
|
|
|
// calculate magnitude of the vector separating the balls
|
|
float bVectMag = sqrt(bVect.x * bVect.x + bVect.y * bVect.y);
|
|
if (bVectMag < b[0].r + b[1].r){
|
|
// get angle of bVect
|
|
float theta = atan2(bVect.y, bVect.x);
|
|
// precalculate trig values
|
|
float sine = sin(theta);
|
|
float cosine = cos(theta);
|
|
|
|
/* bTemp will hold rotated ball positions. You
|
|
just need to worry about bTemp[1] position*/
|
|
Ball[] bTemp = {
|
|
new Ball(), new Ball()
|
|
};
|
|
|
|
/* b[1]'s position is relative to b[0]'s
|
|
so you can use the vector between them (bVect) as the
|
|
reference point in the rotation expressions.
|
|
bTemp[0].x and bTemp[0].y will initialize
|
|
automatically to 0.0, which is what you want
|
|
since b[1] will rotate around b[0] */
|
|
bTemp[1].x = cosine * bVect.x + sine * bVect.y;
|
|
bTemp[1].y = cosine * bVect.y - sine * bVect.x;
|
|
|
|
// rotate Temporary velocities
|
|
PVector[] vTemp = {
|
|
new PVector(), new PVector()
|
|
};
|
|
vTemp[0].x = cosine * v[0].x + sine * v[0].y;
|
|
vTemp[0].y = cosine * v[0].y - sine * v[0].x;
|
|
vTemp[1].x = cosine * v[1].x + sine * v[1].y;
|
|
vTemp[1].y = cosine * v[1].y - sine * v[1].x;
|
|
|
|
/* Now that velocities are rotated, you can use 1D
|
|
conservation of momentum equations to calculate
|
|
the final velocity along the x-axis. */
|
|
PVector[] vFinal = {
|
|
new PVector(), new PVector()
|
|
};
|
|
// final rotated velocity for b[0]
|
|
vFinal[0].x = ((b[0].m - b[1].m) * vTemp[0].x + 2 * b[1].m *
|
|
vTemp[1].x) / (b[0].m + b[1].m);
|
|
vFinal[0].y = vTemp[0].y;
|
|
// final rotated velocity for b[0]
|
|
vFinal[1].x = ((b[1].m - b[0].m) * vTemp[1].x + 2 * b[0].m *
|
|
vTemp[0].x) / (b[0].m + b[1].m);
|
|
vFinal[1].y = vTemp[1].y;
|
|
|
|
// hack to avoid clumping
|
|
bTemp[0].x += vFinal[0].x;
|
|
bTemp[1].x += vFinal[1].x;
|
|
|
|
/* Rotate ball positions and velocities back
|
|
Reverse signs in trig expressions to rotate
|
|
in the opposite direction */
|
|
// rotate balls
|
|
Ball[] bFinal = {
|
|
new Ball(), new Ball()
|
|
};
|
|
bFinal[0].x = cosine * bTemp[0].x - sine * bTemp[0].y;
|
|
bFinal[0].y = cosine * bTemp[0].y + sine * bTemp[0].x;
|
|
bFinal[1].x = cosine * bTemp[1].x - sine * bTemp[1].y;
|
|
bFinal[1].y = cosine * bTemp[1].y + sine * bTemp[1].x;
|
|
|
|
// update balls to screen position
|
|
b[1].x = b[0].x + bFinal[1].x;
|
|
b[1].y = b[0].y + bFinal[1].y;
|
|
b[0].x = b[0].x + bFinal[0].x;
|
|
b[0].y = b[0].y + bFinal[0].y;
|
|
|
|
// update velocities
|
|
v[0].x = cosine * vFinal[0].x - sine * vFinal[0].y;
|
|
v[0].y = cosine * vFinal[0].y + sine * vFinal[0].x;
|
|
v[1].x = cosine * vFinal[1].x - sine * vFinal[1].y;
|
|
v[1].y = cosine * vFinal[1].y + sine * vFinal[1].x;
|
|
}
|
|
}
|
|
|
|
void checkBoundaryCollision(Ball ball, PVector vel) {
|
|
if (ball.x > width-ball.r) {
|
|
ball.x = width-ball.r;
|
|
vel.x *= -1;
|
|
}
|
|
else if (ball.x < ball.r) {
|
|
ball.x = ball.r;
|
|
vel.x *= -1;
|
|
}
|
|
else if (ball.y > height-ball.r) {
|
|
ball.y = height-ball.r;
|
|
vel.y *= -1;
|
|
}
|
|
else if (ball.y < ball.r) {
|
|
ball.y = ball.r;
|
|
vel.y *= -1;
|
|
}
|
|
}
|
|
|