Files
processing4/java/examples/OpenGL/Advanced/Planets/Perlin.pde
2012-07-20 20:24:58 +00:00

262 lines
5.3 KiB
Plaintext

// Implementation of 1D, 2D, and 3D Perlin noise. Based on the
// C code by Paul Bourke:
// http://local.wasp.uwa.edu.au/~pbourke/texture_colour/perlin/
class Perlin {
int B = 0x100;
int BM = 0xff;
int N = 0x1000;
int NP = 12;
int NM = 0xfff;
int p[];
float g3[][];
float g2[][];
float g1[];
void normalize2(float v[]) {
float s = sqrt(v[0] * v[0] + v[1] * v[1]);
v[0] = v[0] / s;
v[1] = v[1] / s;
}
void normalize3(float v[]) {
float s = sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
v[0] = v[0] / s;
v[1] = v[1] / s;
v[2] = v[2] / s;
}
float sCurve(float t) {
return t * t * (3.0 - 2.0 * t);
}
float at2(float q[], float rx, float ry) {
return rx * q[0] + ry * q[1];
}
float at3(float q[], float rx, float ry, float rz) {
return rx * q[0] + ry * q[1] + rz * q[2];
}
Perlin() {
p = new int[B + B + 2];
g3 = new float[B + B + 2][3];
g2 = new float[B + B + 2][2];
g1 = new float[B + B + 2];
init();
}
void init() {
int i, j, k;
for (i = 0 ; i < B ; i++) {
p[i] = i;
g1[i] = (random(B + B) - B) / B;
for (j = 0 ; j < 2 ; j++)
g2[i][j] = (random(B + B) - B) / B;
normalize2(g2[i]);
for (j = 0 ; j < 3 ; j++)
g3[i][j] = (random(B + B) - B) / B;
normalize3(g3[i]);
}
while (0 < --i) {
k = p[i];
p[i] = p[j = int(random(B))];
p[j] = k;
}
for (i = 0 ; i < B + 2 ; i++) {
p[B + i] = p[i];
g1[B + i] = g1[i];
for (j = 0 ; j < 2 ; j++)
g2[B + i][j] = g2[i][j];
for (j = 0 ; j < 3 ; j++)
g3[B + i][j] = g3[i][j];
}
}
float noise1(float[] vec) {
int bx0, bx1;
float rx0, rx1, sx, t, u, v;
t = vec[0] + N;
bx0 = int(t) & BM;
bx1 = (bx0 + 1) & BM;
rx0 = t - int(t);
rx1 = rx0 - 1.0;
sx = sCurve(rx0);
u = rx0 * g1[p[bx0]];
v = rx1 * g1[p[bx1]];
return lerp(u, v, sx);
}
float noise2(float[] vec) {
int bx0, bx1, by0, by1, b00, b10, b01, b11;
float rx0, rx1, ry0, ry1, sx, sy, a, b, t, u, v;
float[] q;
int i, j;
t = vec[0] + N;
bx0 = int(t) & BM;
bx1 = (bx0 + 1) & BM;
rx0 = t - int(t);
rx1 = rx0 - 1.0;
t = vec[1] + N;
by0 = int(t) & BM;
by1 = (by0 + 1) & BM;
ry0 = t - int(t);
ry1 = ry0 - 1.0;
i = p[bx0];
j = p[bx1];
b00 = p[i + by0];
b10 = p[j + by0];
b01 = p[i + by1];
b11 = p[j + by1];
sx = sCurve(rx0);
sy = sCurve(ry0);
q = g2[b00];
u = at2(q, rx0, ry0);
q = g2[b10];
v = at2(q, rx1, ry0);
a = lerp(u, v, sx);
q = g2[b01] ;
u = at2(q, rx0, ry1);
q = g2[b11] ;
v = at2(q, rx1, ry1);
b = lerp(u, v, sx);
return lerp(a, b, sy);
}
float noise3(float[] vec) {
int bx0, bx1, by0, by1, bz0, bz1, b00, b10, b01, b11;
float rx0, rx1, ry0, ry1, rz0, rz1, sy, sz, a, b, c, d, t, u, v;
float[] q;
int i, j;
t = vec[0] + N;
bx0 = int(t) & BM;
bx1 = (bx0 + 1) & BM;
rx0 = t - int(t);
rx1 = rx0 - 1.0;
t = vec[1] + N;
by0 = int(t) & BM;
by1 = (by0 + 1) & BM;
ry0 = t - int(t);
ry1 = ry0 - 1.0;
t = vec[2] + N;
bz0 = int(t) & BM;
bz1 = (bz0 + 1) & BM;
rz0 = t - int(t);
rz1 = rz0 - 1.0;
i = p[bx0];
j = p[bx1];
b00 = p[i + by0];
b10 = p[j + by0];
b01 = p[i + by1];
b11 = p[j + by1];
t = sCurve(rx0);
sy = sCurve(ry0);
sz = sCurve(rz0);
q = g3[b00 + bz0];
u = at3(q, rx0, ry0, rz0);
q = g3[b10 + bz0];
v = at3(q, rx1, ry0, rz0);
a = lerp(u, v, t);
q = g3[b01 + bz0];
u = at3(q, rx0, ry1, rz0);
q = g3[b11 + bz0];
v = at3(q, rx1, ry1, rz0);
b = lerp(u, v, t);
c = lerp(a, b, sy);
q = g3[b00 + bz1];
u = at3(q, rx0, ry0, rz1);
q = g3[b10 + bz1];
v = at3(q, rx1, ry0, rz1);
a = lerp(u, v, t);
q = g3[b01 + bz1];
u = at3(q, rx0, ry1, rz1);
q = g3[b11 + bz1];
v = at3(q, rx1, ry1, rz1);
b = lerp(u, v, t);
d = lerp(a, b, sy);
return lerp(c, d, sz);
}
// In what follows "nalpha" is the weight when the sum is formed.
// Typically it is 2, as this approaches 1 the function is noisier.
// "nbeta" is the harmonic scaling/spacing, typically 2. n is the
// number of harmonics added up in the final result. Higher number
// results in more detailed noise.
float noise1D(float x, float nalpha, float nbeta, int n) {
float val, sum = 0;
float v[] = {x};
float nscale = 1;
for (int i = 0; i < n; i++) {
val = noise1(v);
sum += val / nscale;
nscale *= nalpha;
v[0] *= nbeta;
}
return sum;
}
float noise2D(float x, float y, float nalpha, float nbeta, int n) {
float val,sum = 0;
float v[] = {x, y};
float nscale = 1;
for (int i = 0; i < n; i++) {
val = noise2(v);
sum += val / nscale;
nscale *= nalpha;
v[0] *= nbeta;
v[1] *= nbeta;
}
return sum;
}
float noise3D(float x, float y, float z, float nalpha, float nbeta, int n) {
float val, sum = 0;
float v[] = {x, y, z};
float nscale = 1;
for (int i = 0 ; i < n; i++) {
val = noise3(v);
sum += val / nscale;
nscale *= nalpha;
v[0] *= nbeta;
v[1] *= nbeta;
v[2] *= nbeta;
}
return sum;
}
}