mirror of
https://github.com/processing/processing4.git
synced 2026-01-29 11:21:06 +01:00
262 lines
5.3 KiB
Plaintext
262 lines
5.3 KiB
Plaintext
// Implementation of 1D, 2D, and 3D Perlin noise. Based on the
|
|
// C code by Paul Bourke:
|
|
// http://local.wasp.uwa.edu.au/~pbourke/texture_colour/perlin/
|
|
class Perlin {
|
|
int B = 0x100;
|
|
int BM = 0xff;
|
|
int N = 0x1000;
|
|
int NP = 12;
|
|
int NM = 0xfff;
|
|
|
|
int p[];
|
|
float g3[][];
|
|
float g2[][];
|
|
float g1[];
|
|
|
|
void normalize2(float v[]) {
|
|
float s = sqrt(v[0] * v[0] + v[1] * v[1]);
|
|
v[0] = v[0] / s;
|
|
v[1] = v[1] / s;
|
|
}
|
|
|
|
void normalize3(float v[]) {
|
|
float s = sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
|
|
v[0] = v[0] / s;
|
|
v[1] = v[1] / s;
|
|
v[2] = v[2] / s;
|
|
}
|
|
|
|
float sCurve(float t) {
|
|
return t * t * (3.0 - 2.0 * t);
|
|
}
|
|
|
|
float at2(float q[], float rx, float ry) {
|
|
return rx * q[0] + ry * q[1];
|
|
}
|
|
|
|
float at3(float q[], float rx, float ry, float rz) {
|
|
return rx * q[0] + ry * q[1] + rz * q[2];
|
|
}
|
|
|
|
Perlin() {
|
|
p = new int[B + B + 2];
|
|
g3 = new float[B + B + 2][3];
|
|
g2 = new float[B + B + 2][2];
|
|
g1 = new float[B + B + 2];
|
|
|
|
init();
|
|
}
|
|
|
|
void init() {
|
|
int i, j, k;
|
|
|
|
for (i = 0 ; i < B ; i++) {
|
|
p[i] = i;
|
|
g1[i] = (random(B + B) - B) / B;
|
|
|
|
for (j = 0 ; j < 2 ; j++)
|
|
g2[i][j] = (random(B + B) - B) / B;
|
|
normalize2(g2[i]);
|
|
|
|
for (j = 0 ; j < 3 ; j++)
|
|
g3[i][j] = (random(B + B) - B) / B;
|
|
normalize3(g3[i]);
|
|
}
|
|
|
|
while (0 < --i) {
|
|
k = p[i];
|
|
p[i] = p[j = int(random(B))];
|
|
p[j] = k;
|
|
}
|
|
|
|
for (i = 0 ; i < B + 2 ; i++) {
|
|
p[B + i] = p[i];
|
|
g1[B + i] = g1[i];
|
|
for (j = 0 ; j < 2 ; j++)
|
|
g2[B + i][j] = g2[i][j];
|
|
for (j = 0 ; j < 3 ; j++)
|
|
g3[B + i][j] = g3[i][j];
|
|
}
|
|
}
|
|
|
|
float noise1(float[] vec) {
|
|
int bx0, bx1;
|
|
float rx0, rx1, sx, t, u, v;
|
|
|
|
t = vec[0] + N;
|
|
bx0 = int(t) & BM;
|
|
bx1 = (bx0 + 1) & BM;
|
|
rx0 = t - int(t);
|
|
rx1 = rx0 - 1.0;
|
|
|
|
sx = sCurve(rx0);
|
|
u = rx0 * g1[p[bx0]];
|
|
v = rx1 * g1[p[bx1]];
|
|
|
|
return lerp(u, v, sx);
|
|
}
|
|
|
|
float noise2(float[] vec) {
|
|
int bx0, bx1, by0, by1, b00, b10, b01, b11;
|
|
float rx0, rx1, ry0, ry1, sx, sy, a, b, t, u, v;
|
|
float[] q;
|
|
int i, j;
|
|
|
|
t = vec[0] + N;
|
|
bx0 = int(t) & BM;
|
|
bx1 = (bx0 + 1) & BM;
|
|
rx0 = t - int(t);
|
|
rx1 = rx0 - 1.0;
|
|
|
|
t = vec[1] + N;
|
|
by0 = int(t) & BM;
|
|
by1 = (by0 + 1) & BM;
|
|
ry0 = t - int(t);
|
|
ry1 = ry0 - 1.0;
|
|
|
|
i = p[bx0];
|
|
j = p[bx1];
|
|
|
|
b00 = p[i + by0];
|
|
b10 = p[j + by0];
|
|
b01 = p[i + by1];
|
|
b11 = p[j + by1];
|
|
|
|
sx = sCurve(rx0);
|
|
sy = sCurve(ry0);
|
|
|
|
q = g2[b00];
|
|
u = at2(q, rx0, ry0);
|
|
q = g2[b10];
|
|
v = at2(q, rx1, ry0);
|
|
a = lerp(u, v, sx);
|
|
|
|
q = g2[b01] ;
|
|
u = at2(q, rx0, ry1);
|
|
q = g2[b11] ;
|
|
v = at2(q, rx1, ry1);
|
|
b = lerp(u, v, sx);
|
|
|
|
return lerp(a, b, sy);
|
|
}
|
|
|
|
float noise3(float[] vec) {
|
|
int bx0, bx1, by0, by1, bz0, bz1, b00, b10, b01, b11;
|
|
float rx0, rx1, ry0, ry1, rz0, rz1, sy, sz, a, b, c, d, t, u, v;
|
|
float[] q;
|
|
int i, j;
|
|
|
|
t = vec[0] + N;
|
|
bx0 = int(t) & BM;
|
|
bx1 = (bx0 + 1) & BM;
|
|
rx0 = t - int(t);
|
|
rx1 = rx0 - 1.0;
|
|
|
|
t = vec[1] + N;
|
|
by0 = int(t) & BM;
|
|
by1 = (by0 + 1) & BM;
|
|
ry0 = t - int(t);
|
|
ry1 = ry0 - 1.0;
|
|
|
|
t = vec[2] + N;
|
|
bz0 = int(t) & BM;
|
|
bz1 = (bz0 + 1) & BM;
|
|
rz0 = t - int(t);
|
|
rz1 = rz0 - 1.0;
|
|
|
|
i = p[bx0];
|
|
j = p[bx1];
|
|
|
|
b00 = p[i + by0];
|
|
b10 = p[j + by0];
|
|
b01 = p[i + by1];
|
|
b11 = p[j + by1];
|
|
|
|
t = sCurve(rx0);
|
|
sy = sCurve(ry0);
|
|
sz = sCurve(rz0);
|
|
|
|
q = g3[b00 + bz0];
|
|
u = at3(q, rx0, ry0, rz0);
|
|
q = g3[b10 + bz0];
|
|
v = at3(q, rx1, ry0, rz0);
|
|
a = lerp(u, v, t);
|
|
|
|
q = g3[b01 + bz0];
|
|
u = at3(q, rx0, ry1, rz0);
|
|
q = g3[b11 + bz0];
|
|
v = at3(q, rx1, ry1, rz0);
|
|
b = lerp(u, v, t);
|
|
|
|
c = lerp(a, b, sy);
|
|
|
|
q = g3[b00 + bz1];
|
|
u = at3(q, rx0, ry0, rz1);
|
|
q = g3[b10 + bz1];
|
|
v = at3(q, rx1, ry0, rz1);
|
|
a = lerp(u, v, t);
|
|
|
|
q = g3[b01 + bz1];
|
|
u = at3(q, rx0, ry1, rz1);
|
|
q = g3[b11 + bz1];
|
|
v = at3(q, rx1, ry1, rz1);
|
|
b = lerp(u, v, t);
|
|
|
|
d = lerp(a, b, sy);
|
|
|
|
return lerp(c, d, sz);
|
|
}
|
|
|
|
// In what follows "nalpha" is the weight when the sum is formed.
|
|
// Typically it is 2, as this approaches 1 the function is noisier.
|
|
// "nbeta" is the harmonic scaling/spacing, typically 2. n is the
|
|
// number of harmonics added up in the final result. Higher number
|
|
// results in more detailed noise.
|
|
|
|
float noise1D(float x, float nalpha, float nbeta, int n) {
|
|
float val, sum = 0;
|
|
float v[] = {x};
|
|
float nscale = 1;
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
val = noise1(v);
|
|
sum += val / nscale;
|
|
nscale *= nalpha;
|
|
v[0] *= nbeta;
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
float noise2D(float x, float y, float nalpha, float nbeta, int n) {
|
|
float val,sum = 0;
|
|
float v[] = {x, y};
|
|
float nscale = 1;
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
val = noise2(v);
|
|
sum += val / nscale;
|
|
nscale *= nalpha;
|
|
v[0] *= nbeta;
|
|
v[1] *= nbeta;
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
float noise3D(float x, float y, float z, float nalpha, float nbeta, int n) {
|
|
float val, sum = 0;
|
|
float v[] = {x, y, z};
|
|
float nscale = 1;
|
|
|
|
for (int i = 0 ; i < n; i++) {
|
|
val = noise3(v);
|
|
sum += val / nscale;
|
|
nscale *= nalpha;
|
|
v[0] *= nbeta;
|
|
v[1] *= nbeta;
|
|
v[2] *= nbeta;
|
|
}
|
|
return sum;
|
|
}
|
|
}
|
|
|