mirror of
https://github.com/processing/processing4.git
synced 2026-01-29 03:11:08 +01:00
191 lines
3.7 KiB
Plaintext
191 lines
3.7 KiB
Plaintext
// Ariel and V3ga's arcball class with a couple tiny mods by Robert Hodgin
|
|
|
|
class Arcball {
|
|
float center_x, center_y, radius;
|
|
Vec3 v_down, v_drag;
|
|
Quat q_now, q_down, q_drag;
|
|
Vec3[] axisSet;
|
|
int axis;
|
|
float mxv, myv;
|
|
float x, y;
|
|
|
|
Arcball(float center_x, float center_y, float radius){
|
|
this.center_x = center_x;
|
|
this.center_y = center_y;
|
|
this.radius = radius;
|
|
|
|
v_down = new Vec3();
|
|
v_drag = new Vec3();
|
|
|
|
q_now = new Quat();
|
|
q_down = new Quat();
|
|
q_drag = new Quat();
|
|
|
|
axisSet = new Vec3[] {new Vec3(1.0f, 0.0f, 0.0f), new Vec3(0.0f, 1.0f, 0.0f), new Vec3(0.0f, 0.0f, 1.0f)};
|
|
axis = -1; // no constraints...
|
|
}
|
|
|
|
void mousePressed(){
|
|
v_down = mouse_to_sphere(mouseX, mouseY);
|
|
q_down.set(q_now);
|
|
q_drag.reset();
|
|
}
|
|
|
|
void mouseDragged(){
|
|
v_drag = mouse_to_sphere(mouseX, mouseY);
|
|
q_drag.set(Vec3.dot(v_down, v_drag), Vec3.cross(v_down, v_drag));
|
|
}
|
|
|
|
void run(){
|
|
q_now = Quat.mul(q_drag, q_down);
|
|
applyQuat2Matrix(q_now);
|
|
|
|
x += mxv;
|
|
y += myv;
|
|
mxv -= mxv * .01;
|
|
myv -= myv * .01;
|
|
}
|
|
|
|
Vec3 mouse_to_sphere(float x, float y){
|
|
Vec3 v = new Vec3();
|
|
v.x = (x - center_x) / radius;
|
|
v.y = (y - center_y) / radius;
|
|
|
|
float mag = v.x * v.x + v.y * v.y;
|
|
if (mag > 1.0f){
|
|
v.normalize();
|
|
} else {
|
|
v.z = sqrt(1.0f - mag);
|
|
}
|
|
|
|
return (axis == -1) ? v : constrain_vector(v, axisSet[axis]);
|
|
}
|
|
|
|
Vec3 constrain_vector(Vec3 vector, Vec3 axis){
|
|
Vec3 res = new Vec3();
|
|
res.sub(vector, Vec3.mul(axis, Vec3.dot(axis, vector)));
|
|
res.normalize();
|
|
return res;
|
|
}
|
|
|
|
void applyQuat2Matrix(Quat q){
|
|
// instead of transforming q into a matrix and applying it...
|
|
|
|
float[] aa = q.getValue();
|
|
rotate(aa[0], aa[1], aa[2], aa[3]);
|
|
}
|
|
}
|
|
|
|
static class Vec3{
|
|
float x, y, z;
|
|
|
|
Vec3(){
|
|
}
|
|
|
|
Vec3(float x, float y, float z){
|
|
this.x = x;
|
|
this.y = y;
|
|
this.z = z;
|
|
}
|
|
|
|
void normalize(){
|
|
float length = length();
|
|
x /= length;
|
|
y /= length;
|
|
z /= length;
|
|
}
|
|
|
|
float length(){
|
|
return (float) Math.sqrt(x * x + y * y + z * z);
|
|
}
|
|
|
|
static Vec3 cross(Vec3 v1, Vec3 v2){
|
|
Vec3 res = new Vec3();
|
|
res.x = v1.y * v2.z - v1.z * v2.y;
|
|
res.y = v1.z * v2.x - v1.x * v2.z;
|
|
res.z = v1.x * v2.y - v1.y * v2.x;
|
|
return res;
|
|
}
|
|
|
|
static float dot(Vec3 v1, Vec3 v2){
|
|
return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z;
|
|
}
|
|
|
|
static Vec3 mul(Vec3 v, float d){
|
|
Vec3 res = new Vec3();
|
|
res.x = v.x * d;
|
|
res.y = v.y * d;
|
|
res.z = v.z * d;
|
|
return res;
|
|
}
|
|
|
|
void sub(Vec3 v1, Vec3 v2){
|
|
x = v1.x - v2.x;
|
|
y = v1.y - v2.y;
|
|
z = v1.z - v2.z;
|
|
}
|
|
}
|
|
|
|
static class Quat{
|
|
float w, x, y, z;
|
|
|
|
Quat(){
|
|
reset();
|
|
}
|
|
|
|
Quat(float w, float x, float y, float z){
|
|
this.w = w;
|
|
this.x = x;
|
|
this.y = y;
|
|
this.z = z;
|
|
}
|
|
|
|
void reset(){
|
|
w = 1.0f;
|
|
x = 0.0f;
|
|
y = 0.0f;
|
|
z = 0.0f;
|
|
}
|
|
|
|
void set(float w, Vec3 v){
|
|
this.w = w;
|
|
x = v.x;
|
|
y = v.y;
|
|
z = v.z;
|
|
}
|
|
|
|
void set(Quat q){
|
|
w = q.w;
|
|
x = q.x;
|
|
y = q.y;
|
|
z = q.z;
|
|
}
|
|
|
|
static Quat mul(Quat q1, Quat q2){
|
|
Quat res = new Quat();
|
|
res.w = q1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z;
|
|
res.x = q1.w * q2.x + q1.x * q2.w + q1.y * q2.z - q1.z * q2.y;
|
|
res.y = q1.w * q2.y + q1.y * q2.w + q1.z * q2.x - q1.x * q2.z;
|
|
res.z = q1.w * q2.z + q1.z * q2.w + q1.x * q2.y - q1.y * q2.x;
|
|
return res;
|
|
}
|
|
|
|
float[] getValue(){
|
|
// transforming this quat into an angle and an axis vector...
|
|
|
|
float[] res = new float[4];
|
|
|
|
float sa = (float) Math.sqrt(1.0f - w * w);
|
|
if (sa < EPSILON){
|
|
sa = 1.0f;
|
|
}
|
|
|
|
res[0] = (float) Math.acos(w) * 2.0f;
|
|
res[1] = x / sa;
|
|
res[2] = y / sa;
|
|
res[3] = z / sa;
|
|
|
|
return res;
|
|
}
|
|
}
|