/* * Linux VeeJay * * Copyright(C)2006 Niels Elburg * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License , or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307 , USA. */ #include #include #include #include #include "diffmap.h" #include "common.h" #include "softblur.h" typedef int (*morph_func)(uint8_t *kernel, uint8_t mt[9] ); vj_effect *differencemap_init(int w, int h) { vj_effect *ve = (vj_effect *) vj_calloc(sizeof(vj_effect)); ve->num_params = 3; ve->defaults = (int *) vj_calloc(sizeof(int) * ve->num_params); /* default values */ ve->limits[0] = (int *) vj_calloc(sizeof(int) * ve->num_params); /* min */ ve->limits[1] = (int *) vj_calloc(sizeof(int) * ve->num_params); /* max */ ve->limits[0][0] = 0; // threshold ve->limits[1][0] = 255; ve->limits[0][1] = 0; // reverse ve->limits[1][1] = 1; ve->limits[0][2] = 0; ve->limits[1][2] = 1; // show map ve->defaults[0] = 40; ve->defaults[1] = 0; ve->defaults[2] = 1; ve->description = "Map B to A (bitmask)"; ve->sub_format = 1; ve->extra_frame = 1; ve->has_user = 0; ve->param_description = vje_build_param_list( ve->num_params, "Threshold", "Reverse", "Show"); return ve; } static uint8_t *binary_img = NULL; static int nframe = 0; #define RUP8(num)(((num)+8)&~8) int differencemap_malloc(int w, int h ) { binary_img = (uint8_t*) vj_malloc(sizeof(uint8_t) * RUP8(w*h*2) ); nframe = 0; if(!binary_img) return 0; return 1; } void differencemap_free(void) { if(binary_img) free(binary_img); binary_img = NULL; } #ifndef MIN #define MIN(a,b) ( (a)>(b) ? (b) : (a) ) #endif #ifndef MAX #define MAX(a,b) ( (a)>(b) ? (a) : (b) ) #endif static int _dilate_kernel3x3( uint8_t *kernel, uint8_t img[9]) { register int x; /* consider all background pixels (0) in input image */ for(x = 0; x < 9; x ++ ) if((kernel[x] * img[x]) > 0 ) return 1; return 0; } /* #ifdef HAVE_ASM_MMX #undef HAVE_K6_2PLUS #if !defined( HAVE_ASM_MMX2) && defined( HAVE_ASM_3DNOW ) #define HAVE_K6_2PLUS #endif #undef _EMMS #ifdef HAVE_K6_2PLUS #define _EMMS "femms" #else #define _EMMS "emms" #endif static inline void load_binary_map( uint8_t *mask ) { __asm __volatile( "movq (%0), %%mm0\n\t" :: "r" (mask) ); } static inline void map_luma( uint8_t *dst, uint8_t *B ) //static inline void map_luma( uint8_t *dst, uint8_t *B, uint8_t *mask ) { __asm __volatile( // "movq (%0), %%mm0\n\t" "movq (%0), %%mm1\n\t" "pand %%mm0, %%mm1\n\t" "movq %%mm1, (%1)\n\t" // :: "r" (mask), "r" (B), "r" (dst) :: "r" (B) , "r" (dst) ); } static inline void load_chroma( uint8_t val ) { uint8_t mask[8] = { val,val,val,val, val,val,val,val }; uint8_t *m = &mask[0]; __asm __volatile( "movq (%0), %%mm3\n\t # mm3: 128,128,128,128, ..." :: "r" (m) ); } static inline void map_chroma( uint8_t *dst, uint8_t *B ) { __asm __volatile( "movq (%0), %%mm1\n\t" "pand %%mm0, %%mm1\n\t" "pxor %%mm5, %%mm5\n\t" "pcmpeqb %%mm1,%%mm5\n\t" "pand %%mm3,%%mm5\n\t" "paddb %%mm5,%%mm1\n\t" "movq %%mm1, (%1) \n\t" :: "r" (B), "r" (dst) ); } static void load_differencemapmm7(uint8_t v) { uint8_t mm[8] = { v,v,v,v, v,v,v,v }; uint8_t *m = (uint8_t*) &(mm[0]); __asm __volatile( "movq (%0), %%mm7\n\t" :: "r" (m) ); } #endif static void binarify( uint8_t *dst, uint8_t *src, uint8_t *prev, uint8_t threshold, int reverse,int w, int h ) { int len = (w * h)>>3; int i; uint8_t *s = src; uint8_t *d = dst; load_differencemapmm7( threshold ); uint8_t *p = dst; for( i = 0; i < len ; i ++ ) { __asm __volatile( "movq (%0),%%mm0\n\t" "pcmpgtb %%mm7,%%mm0\n\t" "movq %%mm0,(%1)\n\t" :: "r" (s), "r" (d) ); s += 8; d += 8; } if( reverse ) { __asm __volatile( "pxor %%mm4,%%mm4" :: ); for( i = 0; i < len ; i ++ ) { __asm __volatile( "movq (%0), %%mm0\n\t" "pcmpeqb %%mm4, %%mm0\n\t" "movq %%mm0, (%1)\n\t" :: "r" (p), "r" (p) ); p += 8; } } } #else*/ static void binarify( uint8_t *dst, uint8_t *src,int threshold,int reverse, int w, int h ) { const int len = w*h; int i; if(!reverse) { for( i = 0; i < len; i ++ ) dst[i] = ( src[i] <= threshold ? 0: 0xff ); } else { for( i = 0; i < len; i ++ ) dst[i] = ( src[i] >= threshold ? 0: 0xff ); } } void differencemap_apply( VJFrame *frame, VJFrame *frame2,int width, int height, int threshold, int reverse, int show ) { unsigned int i,x,y; int len = (width * height); uint8_t *Y = frame->data[0]; uint8_t *Cb = frame->data[1]; uint8_t *Cr = frame->data[2]; uint8_t *Y2 = frame2->data[0]; uint8_t *Cb2=frame2->data[1]; uint8_t *Cr2=frame2->data[2]; const uint8_t kernel[9] = { 1,1,1, 1,1,1, 1,1,1 }; uint8_t *bmap = binary_img; // morph_func p = _dilate_kernel3x3; uint8_t *previous_img = binary_img + len; //@ take copy of image vj_frame_copy1( Y, previous_img, len ); VJFrame tmp; veejay_memcpy(&tmp, frame, sizeof(VJFrame)); tmp.data[0] = previous_img; softblur_apply( &tmp, width,height,0 ); binarify( binary_img,previous_img,threshold,reverse, width,height); /* #ifdef HAVE_ASM_MMX int work = (width*height)>>3; load_chroma( 128 ); for( y = 0 ; y < work; y ++ ) { load_binary_map( bmap ); map_luma(Y , Y2 ); map_chroma( Cb, Cb2 ); map_chroma( Cr, Cr2 ); //@ we could mmx-ify dilation Y += 8; Y2 += 8; Cb += 8; Cb2 += 8; Cr += 8; Cr2 +=8; bmap += 8; } __asm__ __volatile__ ( _EMMS:::"memory"); #else */ //@ clear image if(show) { vj_frame_copy1( binary_img, frame->data[0], len ); vj_frame_clear1( frame->data[1],128, len); vj_frame_clear1(frame->data[2],128, len); return; } veejay_memset( Y, 0, width ); veejay_memset( Cb, 128, width ); veejay_memset( Cr, 128, width ); len -= width; // if(!reverse) // { for(y = width; y < len; y += width ) { for(x = 1; x < width-1; x ++) { if(binary_img[x+y]) //@ found white pixel { /* uint8_t mt[9] = { binary_img[x-1+y-width], binary_img[x+y-width], binary_img[x+1+y-width], binary_img[x-1+y], binary_img[x+y] , binary_img[x+1+y], binary_img[x-1+y+width], binary_img[x+y+width], binary_img[x+1+y+width] }; if( p( kernel, mt ) ) //@ replace pixel for B { Y[x + y] = Y2[x+y]; Cb[x + y] = Cb2[1][x+y]; Cr[x + y] = Cr[2][x+y]; } else //@ black { Y[x + y] = 0; Cb[x + y] = 128; Cr[x+ y] = 128; }*/ Y[x+y] = Y2[x+y]; Cb[x+y] = Cb2[x+y]; Cr[x+y] = Cr2[x+y]; } else { Y[x+y] = 0; Cb[x+y] = 128; Cr[x+y] = 128; } } } // } /* else { for(y = width; y < len; y += width ) { for(x = 1; x < width-1; x ++) { if(!binary_img[x+y]) //@ found black pixel { uint8_t mt[9] = { 0xff-binary_img[x-1+y-width], 0xff-binary_img[x+y-width], 0xff-binary_img[x+1+y-width], 0xff-binary_img[x-1+y], 0xff-binary_img[x+y] , 0xff-binary_img[x+1+y], 0xff-binary_img[x-1+y+width], 0xff-binary_img[x+y+width], 0xff-binary_img[x+1+y+width] }; if( p( kernel, mt ) ) { Y[x + y] = frame2->data[0][x+y]; Cb[x + y] = frame2->data[1][x+y]; Cr[x + y] = frame2->data[2][x+y]; } else { Y[x + y] = 0; Cb[x + y] = 128; Cr[x + y] = 128; } } } } //#endif */ }