/* * Linux VeeJay * * Copyright(C)2006 Niels Elburg * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License , or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307 , USA. */ #include #include #include #include #include "colmorphology.h" #include "common.h" typedef uint8_t (*morph_func)(uint8_t *kernel, uint8_t mt[9] ); vj_effect *colmorphology_init(int w, int h) { vj_effect *ve = (vj_effect *) vj_calloc(sizeof(vj_effect)); ve->num_params = 3; ve->defaults = (int *) vj_calloc(sizeof(int) * ve->num_params); /* default values */ ve->limits[0] = (int *) vj_calloc(sizeof(int) * ve->num_params); /* min */ ve->limits[1] = (int *) vj_calloc(sizeof(int) * ve->num_params); /* max */ ve->limits[0][0] = 0; // threshold ve->limits[1][0] = 255; ve->limits[0][1] = 0; // morpology operator (dilate,erode, ... ) ve->limits[1][1] = 8; ve->limits[0][2] = 0; ve->limits[1][2] = 1; // type ve->defaults[0] = 140; ve->defaults[1] = 1; ve->defaults[2] = 0; ve->description = "Colored Morphology"; ve->sub_format = 1; ve->extra_frame = 0; ve->has_user = 0; ve->parallel = 0; ve->param_description = vje_build_param_list( ve->num_params, "Threshold","Kernel", "Dilate or Erode"); return ve; } static uint8_t *binary_img; int colmorphology_malloc(int w, int h ) { binary_img = (uint8_t*) vj_malloc(sizeof(uint8_t) * w * h ); if(!binary_img) return 0; return 1; } void colmorphology_free(void) { if(binary_img) free(binary_img); binary_img = NULL; } static inline uint8_t _dilate_kernel3x3( uint8_t *kernel, uint8_t img[9]) { register int x; /* consider all background pixels (0) in input image */ for(x = 0; x < 9; x ++ ) if((kernel[x] * img[x]) > 0 ) return pixel_Y_hi_; return pixel_Y_lo_; } static inline uint8_t _erode_kernel3x3( uint8_t *kernel, uint8_t img[9]) { register int x; /* consider all background pixels (0) in input image */ for(x = 0; x < 9; x ++ ) if(kernel[x] && img[x] == 0 ) return pixel_Y_lo_; return pixel_Y_hi_; } void colmorphology_apply( VJFrame *frame, int width, int height, int threshold, int type, int passes ) { unsigned int i,x,y; unsigned int len = frame->len; uint8_t *Y = frame->data[0]; uint8_t kernels[8][9] ={ { 1,1,1, 1,1,1 ,1,1,1 },//0 { 0,1,0, 1,1,1, 0,1,0 },//1 { 0,0,0, 1,1,1, 0,0,0 },//2 { 0,1,0, 0,1,0, 0,1,0 },//3 { 0,0,1, 0,1,0, 1,0,0 },//4 { 1,0,0, 0,1,0, 0,0,1 }, { 1,1,1, 0,0,0, 0,0,0 }, { 0,0,0, 0,0,0, 1,1,1 } }; for( i = 0; i < len; i ++ ) { binary_img[i] = ( Y[i] < threshold ? 0: 0xff ); } len -= width; /* compute dilation of binary image with kernel */ if( passes == 0 ) { for(y = width; y < len; y += width ) { for(x = 1; x < width-1; x ++) { if(binary_img[x+y] == 0) { uint8_t mt[9] = { binary_img[x-1+y-width], binary_img[x+y-width], binary_img[x+1+y-width], binary_img[x-1+y], binary_img[x+y] , binary_img[x+1+y], binary_img[x-1+y+width], binary_img[x+y+width], binary_img[x+1+y+width] }; Y[x+y] = _dilate_kernel3x3(kernels[type], mt); } } } } else { for(y = width; y < len; y += width ) { for(x = 1; x < width-1; x ++) { if(binary_img[x+y] == 0) { uint8_t mt[9] = { binary_img[x-1+y-width], binary_img[x+y-width], binary_img[x+1+y-width], binary_img[x-1+y], binary_img[x+y] , binary_img[x+1+y], binary_img[x-1+y+width], binary_img[x+y+width], binary_img[x+1+y+width] }; Y[x+y] = _erode_kernel3x3( kernels[type], mt ); } } } } }