/* * Linux VeeJay * * Copyright(C)2002 Niels Elburg * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License , or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307 , USA. */ /* this effect takes lumaninance information of frame B (0=no displacement,255=max displacement) to extract distortion offsets for frame A. h_scale and v_scale can be used to limit the scaling factor. if the value is < 128, the pixels will be shifted to the left otherwise to the right. */ #include #include #include #include #include "lumamask.h" #include "common.h" static uint8_t *buf[4] = { NULL,NULL,NULL,NULL }; vj_effect *lumamask_init(int width, int height) { vj_effect *ve = (vj_effect *) vj_calloc(sizeof(vj_effect)); ve->num_params = 4; ve->defaults = (int *) vj_calloc(sizeof(int) * ve->num_params); /* default values */ ve->limits[0] = (int *) vj_calloc(sizeof(int) * ve->num_params); /* min */ ve->limits[1] = (int *) vj_calloc(sizeof(int) * ve->num_params); /* max */ ve->limits[0][0] = 1; ve->limits[1][0] = width; ve->limits[0][1] = 1; ve->limits[1][1] = height; ve->limits[0][2] = 0; ve->limits[1][2] = 1; ve->limits[0][3] = 0; ve->limits[1][3] = 1; ve->defaults[0] = width/20; ve->defaults[1] = height/10; ve->defaults[2] = 0; // border ve->description = "Displacement Map"; ve->motion = 1; ve->sub_format = 1; ve->extra_frame = 1; ve->has_user = 0; ve->param_description = vje_build_param_list(ve->num_params, "X displacement", "Y displacement", "Mode", "Update Alpha" ); return ve; } static int n__ = 0; static int N__ = 0; int lumamask_malloc(int width, int height) { buf[0] = (uint8_t*)vj_malloc( sizeof(uint8_t) * width * height * 4); if(!buf[0]) return 0; veejay_memset( buf[0], 0, width * height ); buf[1] = buf[0] + (width *height); veejay_memset( buf[1], 128, width * height ); buf[2] = buf[1] + (width *height); veejay_memset( buf[2], 128, width * height ); buf[3] = buf[2] + (width *height); veejay_memset( buf[3], 0, width * height ); n__ = 0; N__ = 0; return 1; } void lumamask_apply( VJFrame *frame, VJFrame *frame2, int width, int height, int v_scale, int h_scale, int border, int alpha ) { unsigned int x,y; int dx,dy,nx,ny; int tmp; int interpolate = 1; int tmp1 = v_scale; int tmp2 = h_scale; int motion = 0; if( motionmap_active() ) { motionmap_scale_to(width,height,1,1,&tmp1,&tmp2,&n__,&N__ ); motion = 1; } else { n__ = 0; N__ = 0; } if( n__ == N__ || n__ == 0 ) interpolate = 0; double w_ratio = (double) tmp1 / 128.0; double h_ratio = (double) tmp2 / 128.0; uint8_t *Y = frame->data[0]; uint8_t *Cb= frame->data[1]; uint8_t *Cr= frame->data[2]; uint8_t *Y2 = frame2->data[0]; uint8_t *Cb2 = frame2->data[1]; uint8_t *Cr2 = frame2->data[2]; uint8_t *aA = frame->data[3]; uint8_t *aB = frame2->data[3]; int strides[4] = { width * height, width * height, width * height ,( alpha ? width * height : 0 )}; vj_frame_copy( frame->data, buf, strides ); if( alpha == 0 ) { if( border ) { for(y=0; y < height; y++) { for(x=0; x < width ; x++) { // calculate new location of pixel tmp = Y2[(y*width+x)] - 128; // new x offset dx = w_ratio * tmp; // new y offset dy = h_ratio * tmp; // new pixel coordinates nx = x + dx; ny = y + dy; if( nx < 0 || ny < 0 || nx >= width || ny >= height ) { Y[y*width+x] = 16; Cb[y*width+x] = 128; Cr[y*width+x] = 128; } else { Y[y*width+x] = Y2[ny * width + nx]; Cb[y*width+x] = Cb2[ny * width + nx]; Cr[y*width+x] = Cr2[ny * width + nx]; } } } } else { for(y=0; y < height; y++) { for(x=0; x < width ; x++) { tmp = Y2[(y*width+x)] - 128; dx = w_ratio * tmp; dy = h_ratio * tmp; nx = x + dx; ny = y + dy; while( nx < 0 ) nx += width; while( ny < 0 ) ny += height; if( nx < 0 || ny < 0 || nx >= width || ny >= height ) { Y[y*width+x] = 16; Cb[y*width+x] = 128; Cr[y*width+x] = 128; } else { Y[y*width+x] = Y2[ny * width + nx]; Cb[y*width+x] = Cb2[ny * width + nx]; Cr[y*width+x] = Cr2[ny * width + nx]; } } } } } else /* write alpha */ { if( border ) { for(y=0; y < height; y++) { for(x=0; x < width ; x++) { // calculate new location of pixel tmp = Y2[(y*width+x)] - 128; // new x offset dx = w_ratio * tmp; // new y offset dy = h_ratio * tmp; // new pixel coordinates nx = x + dx; ny = y + dy; if( nx < 0 || ny < 0 || nx >= width || ny >= height ) { Y[y*width+x] = 16; Cb[y*width+x] = 128; Cr[y*width+x] = 128; aA[y*width+x] = 0; } else { Y[y*width+x] = Y2[ny * width + nx]; Cb[y*width+x] = Cb2[ny * width + nx]; Cr[y*width+x] = Cr2[ny * width + nx]; aA[y*width+x] = aB[ny * width + nx]; } } } } else { for(y=0; y < height; y++) { for(x=0; x < width ; x++) { tmp = Y2[(y*width+x)] - 128; dx = w_ratio * tmp; dy = h_ratio * tmp; nx = x + dx; ny = y + dy; while( nx < 0 ) nx += width; while( ny < 0 ) ny += height; if( nx < 0 || ny < 0 || nx >= width || ny >= height ) { Y[y*width+x] = 16; Cb[y*width+x] = 128; Cr[y*width+x] = 128; aA[y*width+x] = 0; } else { Y[y*width+x] = Y2[ny * width + nx]; Cb[y*width+x] = Cb2[ny * width + nx]; Cr[y*width+x] = Cr2[ny * width + nx]; aA[y*width+x] = aB[ny*width+nx]; } } } } } if( interpolate ) motionmap_interpolate_frame( frame, N__, n__ ); if( motion ) motionmap_store_frame( frame ); } void lumamask_free() { if(buf[0]) free(buf[0]); buf[0] = NULL; buf[1] = NULL; buf[2] = NULL; buf[3] = NULL; }