/* * Linux VeeJay * * Copyright(C)2004 Niels Elburg * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License , or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307 , USA. */ #include #include #include #include #include "complexsaturate.h" #include "common.h" vj_effect *complexsaturation_init(int w, int h) { vj_effect *ve; ve = (vj_effect *) vj_calloc(sizeof(vj_effect)); ve->num_params = 7; ve->defaults = (int *) vj_calloc(sizeof(int) * ve->num_params); /* default values */ ve->limits[0] = (int *) vj_calloc(sizeof(int) * ve->num_params); /* min */ ve->limits[1] = (int *) vj_calloc(sizeof(int) * ve->num_params); /* max */ ve->defaults[0] = 300; /* angle */ ve->defaults[1] = 255; /* r */ ve->defaults[2] = 0; /* g */ ve->defaults[3] = 0; /* b */ ve->defaults[4] = 50; /* v_adjust */ ve->defaults[5] = 50; /* degrees */ ve->defaults[6] = 2400; /* noise suppression */ ve->limits[0][0] = 5; ve->limits[1][0] = 900; ve->limits[0][1] = 0; ve->limits[1][1] = 255; ve->limits[0][2] = 0; ve->limits[1][2] = 255; ve->limits[0][3] = 0; ve->limits[1][3] = 255; ve->limits[0][4] = 0; ve->limits[1][4] = 360; ve->limits[0][5] = 0; ve->limits[1][5] = 256; ve->limits[0][6] = 0; ve->limits[1][6] = 3500; ve->has_user = 0; ve->description = "Complex Saturation"; ve->extra_frame = 0; ve->sub_format = 1; ve->rgb_conv = 1; ve->param_description = vje_build_param_list( ve->num_params, "Angle", "Red", "Green", "Blue", "Intensity", "Degrees", "Noise suppression" ); return ve; } void complexsaturation_apply(VJFrame *frame, int width, int height, int i_angle, int r, int g, int b, int adjust_v, int adjust_degrees, int i_noise) { // double degrees = adjust_degrees * 0.01; // double dsat = adjust_v * 0.01; float hue = (adjust_degrees/180.0)*M_PI; float sat = (adjust_v * 0.01); uint8_t *fg_y, *fg_cb, *fg_cr; uint8_t *bg_y, *bg_cb, *bg_cr; int accept_angle_tg, accept_angle_ctg, one_over_kc; int kfgy_scale, kg; int cb, cr; int kbg, x1, y1; float kg1, tmp, aa = 128, bb = 128, _y = 0; float angle = (float) i_angle * 0.1f; float noise_level = (i_noise * 0.01f); unsigned int pos; uint8_t val, tmp1; uint8_t *Y = frame->data[0]; uint8_t *Cb= frame->data[1]; uint8_t *Cr= frame->data[2]; int iy=pixel_Y_lo_,iu=128,iv=128; _rgb2yuv( r,g,b, iy,iu,iv ); _y = (float) iy; aa = (float) iu; bb = (float) iv; tmp = sqrt(((aa * aa) + (bb * bb))); cb = 127 * (aa / tmp); cr = 127 * (bb / tmp); kg1 = tmp; /* obtain coordinate system for cb / cr */ accept_angle_tg = 0xf * tan(M_PI * angle / 180.0); accept_angle_ctg = 0xf / tan(M_PI * angle / 180.0); tmp = 1 / kg1; one_over_kc = 0xff * 2 * tmp - 0xff; kfgy_scale = 0xf * (float) (_y) / kg1; kg = kg1; /* intialize pointers */ fg_y = frame->data[0]; fg_cb = frame->data[1]; fg_cr = frame->data[2]; bg_y = frame->data[0]; bg_cb = frame->data[1]; bg_cr = frame->data[2]; const int s = (int) rint( sin(hue) * (1<<16) * sat ); const int c = (int) rint( cos(hue) * (1<<16) * sat ); for (pos = 0; pos < frame->len; pos++) { short xx, yy; xx = (((fg_cb[pos]) * cb) + ((fg_cr[pos]) * cr)) >> 7; if (xx < -128) xx = -128; if (xx > 127) xx = 127; yy = (((fg_cr[pos]) * cb) - ((fg_cb[pos]) * cr)) >> 7; if (yy < -128) yy = -128; if (yy > 127) yy = 127; /* accept angle should not be > 90 degrees reasonable results between 10 and 80 degrees. */ val = (xx * accept_angle_tg) >> 4; if (val > 127) val = 127; if (abs(yy) > val) { /* pixel is within selected color range, saturate */ val = (yy * accept_angle_ctg) >> 4; x1 = abs(val); y1 = yy; tmp1 = xx - x1; kbg = (tmp1 * one_over_kc) >> 1; if (kbg < 0) kbg = 0; if (kbg > 255) kbg = 255; val = (tmp1 * kfgy_scale) >> 4; val = fg_y[pos] - val; Y[pos] = val; val = ((x1 * (cb-128)) - (y1 * (cr-128))) >> 7; Cb[pos] = val; val = ((x1 * (cr-128)) - (y1 * (cb-128))) >> 7; Cr[pos] = val; val = (yy * yy) + (kg * kg); if (val < (noise_level * noise_level)) { kbg = 255; } val = (Y[pos] + (kbg * bg_y[pos])) >> 8; Y[pos] = CLAMP_Y(val); val = (Cb[pos] + (kbg * bg_cb[pos])) >> 8; Cb[pos] = CLAMP_UV(val); val = (Cr[pos] + (kbg * bg_cr[pos])) >> 8; Cr[pos] = CLAMP_UV(val); int _cb = Cb[pos] - 128; int _cr = Cr[pos] - 128; if( _cb != 0 && _cr != 0) { /* double co=0.0,si=0.0; //fast_sqrt( dsaturation, (double) (_cb * cr + _cr * _cr) ); dsaturation = ccolor_sqrt( (double) _cb, (double) _cr); dcolor = ccolor_sine( _cb, dsaturation); if( _cr < 0) { dcolor = M_PI - dcolor; } dcolor += (degrees * M_PI) / 180.0; dsaturation *= dsat; sin_cos( co, si , dcolor ); Cb[pos] = si * dsaturation + 128; const int u = Cb[i] - 128; const int v = Cr[i] - 128; int new_u = (c * u - s * v + (1<<15) + (128<<16)) >> 16; int new_v = (s * u + c * v + (1<<15) + (128<<16)) >> 16; if( new_u & 768 ) new_u = (-new_u) >> 31; if( new_v & 768 ) new_v = (-new_v) >> 31; Cr[pos] = co * dsaturation + 128;*/ const int u = Cb[pos] - 128; const int v = Cr[pos] - 128; int new_u = (c * u - s * v + (1<<15) + (128<<16)) >> 16; int new_v = (s * u + c * v + (1<<15) + (128<<16)) >> 16; if( new_u & 768 ) new_u = (-new_u) >> 31; if( new_v & 768 ) new_v = (-new_v) >> 31; Cb[pos] = new_u; Cr[pos] = new_v; } } } } void complexsaturate_free(){}