Files
2018-09-25 17:31:49 -07:00

421 lines
14 KiB
C++
Executable File

/*
* Software written by Jared Bruni https://github.com/lostjared
This software is dedicated to all the people that struggle with mental illness.
Website: http://lostsidedead.com
YouTube: http://youtube.com/LostSideDead
Instagram: http://instagram.com/jaredbruni
Twitter: http://twitter.com/jaredbruni
Facebook: http://facebook.com/LostSideDead0x
You can use this program free of charge and redistrubute it online as long
as you do not charge anything for this program. This program is meant to be
100% free.
BSD 2-Clause License
Copyright (c) 2018, Jared Bruni
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "ac.h"
// Apply color map to cv::Mat
void ac::ApplyColorMap(cv::Mat &frame) {
if(set_color_map > 0 && set_color_map < 13) {
cv::Mat output_f1 = frame.clone();
cv::applyColorMap(output_f1, frame, (int)set_color_map-1);
const int w = frame.cols;
const int h = frame.rows;
color_map_set = true;
for(int z = 0; z < h; ++z) {
for(int i = 0; i < w; ++i) {
ac::swapColors(frame, z, i);
if(isNegative) ac::invert(frame, z, i);
}
}
color_map_set = false;
}
}
// set cv::Mat brightness
void ac::setBrightness(cv::Mat &frame, double alpha, int beta) {
cv::Mat c = frame.clone();
c.convertTo(frame, -1, alpha, beta);
}
// set cv::Mat gamma
void ac::setGamma(cv::Mat &frame, cv::Mat &outframe, const double gamma) {
cv::Mat lookUpTable(1, 256, CV_8U);
uchar* p = lookUpTable.ptr();
for(int i = 0; i < 256; ++i) {
p[i] = cv::saturate_cast<unsigned char>(pow(i / 255.0, gamma) * 255.0);
}
cv::Mat res = frame.clone();
LUT(frame, lookUpTable, outframe);
}
// set cv::Mat saturation
void ac::setSaturation(cv::Mat &frame, int saturation) {
cv::Mat image;
cv::cvtColor(frame, image, CV_BGR2HSV);
const int w = frame.cols;
const int h = frame.rows;
for(int z = 0; z < h; ++z) {
for(int i = 0; i < w; ++i) {
cv::Vec3b &pixel = image.at<cv::Vec3b>(z, i);
pixel[1] = static_cast<unsigned char>(saturation);
}
}
cv::cvtColor(image, frame, CV_HSV2BGR);
}
void ac::Negate(cv::Mat &frame) {
for(int z = 0; z < frame.rows; ++z) {
for(int i = 0; i < frame.cols; ++i) {
cv::Vec3b &pixel = frame.at<cv::Vec3b>(z, i);
for(int j = 0; j < 3; ++j)
pixel[j] = ~pixel[j];
}
}
}
void ac::Add(cv::Mat &src, cv::Mat &add, bool sat) {
if(src.size() != add.size())
return;
if(src.empty() || add.empty())
return;
for(int z = 0; z < src.rows; ++z) {
for(int i = 0; i < src.cols; ++i) {
cv::Vec3b &pixel = src.at<cv::Vec3b>(z, i);
cv::Vec3b pix = add.at<cv::Vec3b>(z, i);
for(int j = 0; j < 3; ++j)
pixel[j] = (sat == true) ? cv::saturate_cast<unsigned char>(pixel[j]+pix[j]) : static_cast<unsigned char>(pixel[j]+pix[j]);
}
}
}
void ac::Sub(cv::Mat &src, cv::Mat &sub, bool sat) {
if(src.size() != sub.size())
return;
if(src.empty() || sub.empty())
return;
for(int z = 0; z < src.rows; ++z) {
for(int i = 0; i < src.cols; ++i) {
cv::Vec3b &pixel = src.at<cv::Vec3b>(z, i);
cv::Vec3b pix = sub.at<cv::Vec3b>(z, i);
for(int j = 0; j < 3; ++j)
pixel[j] = (sat == true) ? cv::saturate_cast<unsigned char>(pixel[j]-pix[j]) : static_cast<unsigned char>(pixel[j]-pix[j]);
}
}
}
void ac::ScalarAverage(const cv::Mat &frame, cv::Scalar &s) {
s = cv::Scalar();
if(frame.empty()) return;
for(int z = 0; z < frame.rows; ++z) {
for(int i = 0; i < frame.cols; ++i) {
cv::Vec3b col = frame.at<cv::Vec3b>(z, i);
for(int j = 0; j < 3; ++j)
s[j] += col[j];
}
}
unsigned long total_pixels = frame.rows * frame.cols;
for(int j = 0; j < 3; ++j)
s[j] /= total_pixels;
}
void ac::TotalAverageOffset(cv::Mat &frame, unsigned long &value) {
if(frame.empty()) return;
value = 0;
for(int z = 0; z < frame.rows; ++z) {
for(int i = 0; i < frame.cols; ++i) {
cv::Vec3b &pixel = frame.at<cv::Vec3b>(z, i);
value += (pixel[0]+pixel[1]+pixel[2]);
}
}
value /= (frame.rows * frame.cols);
}
// filter color keyed image
void ac::filterColorKeyed(const cv::Vec3b &color, const cv::Mat &orig, const cv::Mat &filtered, cv::Mat &output) {
if(colorkey_set == false || color_image.empty()) return;
if(orig.size()!=filtered.size()) {
std::cerr << "filterColorKeyed: Error not same size...\n";
return;
}
output = orig.clone();
for(int z = 0; z < orig.rows; ++z) {
for(int i = 0; i < orig.cols; ++i) {
int cX = AC_GetFX(color_image.cols, i, orig.cols);
int cY = AC_GetFZ(color_image.rows, z, orig.rows);
cv::Vec3b add_i = color_image.at<cv::Vec3b>(cY, cX);
if(add_i == color) {
cv::Vec3b pixel = filtered.at<cv::Vec3b>(z, i);
cv::Vec3b &dst = output.at<cv::Vec3b>(z, i);
dst = pixel;
}
}
}
}
// Alpha Blend function
void ac::AlphaBlend(const cv::Mat &one, const cv::Mat &two, cv::Mat &output,double alpha) {
if(one.size() != two.size()) {
return;
}
if(output.empty() || output.size() != one.size())
output.create(one.size(), CV_8UC3);
for(int z = 0; z < one.rows; ++z) {
for(int i = 0; i < one.cols; ++i) {
cv::Vec3b pix[2];
cv::Vec3b &pixel = output.at<cv::Vec3b>(z, i);
pix[0] = one.at<cv::Vec3b>(z, i);
pix[1] = two.at<cv::Vec3b>(z, i);
pixel[0] = static_cast<unsigned char>((pix[0][0] * alpha) + (pix[1][0] * alpha));
pixel[1] = static_cast<unsigned char>((pix[0][1] * alpha) + (pix[1][1] * alpha));
pixel[2] = static_cast<unsigned char>((pix[0][2] * alpha) + (pix[1][2] * alpha));
}
}
}
void ac::AlphaXorBlend(const cv::Mat &one, const cv::Mat &two, cv::Mat &output, double alpha) {
if(one.size() != two.size()) {
return;
}
if(output.empty() || output.size() != one.size())
output.create(one.size(), CV_8UC3);
for(int z = 0; z < one.rows; ++z) {
for(int i = 0; i < one.cols; ++i) {
cv::Vec3b pix[2];
cv::Vec3b &pixel = output.at<cv::Vec3b>(z, i);
pix[0] = one.at<cv::Vec3b>(z, i);
pix[1] = two.at<cv::Vec3b>(z, i);
pixel[0] = static_cast<unsigned char>((pix[0][0] * static_cast<unsigned char>(alpha)) ^ (pix[1][0] * static_cast<unsigned char>(alpha)));
pixel[1] = static_cast<unsigned char>((pix[0][1] * static_cast<unsigned char>(alpha)) ^ (pix[1][1] * static_cast<unsigned char>(alpha)));
pixel[2] = static_cast<unsigned char>((pix[0][2] * static_cast<unsigned char>(alpha)) ^ (pix[1][2] * static_cast<unsigned char>(alpha)));
}
}
}
bool ac::reset_alpha = false;
void ac::resetAlpha(int &dir, double &alpha) {
if(reset_alpha == true) {
alpha = 1.0;
dir = 1;
}
}
void ac::resetAlpha(double &alpha) {
if(reset_alpha == true) {
alpha = 1.0;
}
}
void ac::AddInvert(cv::Mat &frame) {
if(in_custom == true) return;
for(int z = 0; z < frame.rows; ++z) {
for(int i = 0; i < frame.cols; ++i) {
swapColors(frame, z, i);// swap colors
if(isNegative) invert(frame, z, i);// if isNegative invert pixel */
}
}
}
// Make two copies of the current frame, apply filter1 to one, filter2 to the other
// then Alpha Blend them together
void ac::filterFade(cv::Mat &frame, int filter1, int filter2, double alpha) {
const int h = frame.rows; // frame height
const int w = frame.cols;// framew idth
// make copies of original frame
cv::Mat frame1 = frame.clone(), frame2 = frame.clone();
// apply filters on two copies of original frame
ac::draw_func[filter1](frame1);
ac::draw_func[filter2](frame2);
// loop through image setting each pixel with alphablended pixel
for(int z = 0; z < h; ++z) {
for(int i = 0; i < w; ++i) {
cv::Vec3b &pixel = frame.at<cv::Vec3b>(z, i); // target pixel
cv::Vec3b frame1_pix = frame1.at<cv::Vec3b>(z, i); // frame1 pixel
cv::Vec3b frame2_pix = frame2.at<cv::Vec3b>(z, i); // frame2 pixel
// loop through pixel components and set target pixel to alpha blended pixel of two frames
for(int q = 0; q < 3; ++q)
pixel[q] = static_cast<unsigned char>(frame2_pix[q]+(frame1_pix[q]*alpha));
}
}
}
// Copy cv::Mat
void ac::copyMat(const cv::Mat &src,int src_x, int src_y ,cv::Mat &target, const ac::Rect &rc) {
for(int i = 0; i < rc.w; ++i) {
for(int z = 0; z < rc.h; ++z) {
if(src_y+z < src.rows && src_x+i < src.cols && rc.y+z < target.rows && rc.x+i < target.cols) {
ASSERT(src_y+z < src.rows && src_x+i < src.cols && rc.y+z < target.rows && rc.x+i < target.cols);
cv::Vec3b &pixel = target.at<cv::Vec3b>(rc.y+z, rc.x+i);
cv::Vec3b src_pixel = src.at<cv::Vec3b>(src_y+z, src_x+i);
pixel = src_pixel;
}
}
}
}
void ac::copyMat(const cv::Mat &src, const Point &p, cv::Mat &target, const ac::Rect &rc) {
copyMat(src, p.x, p.y, target, rc);
}
void ac::copyMat(const cv::Mat &src, int x, int y, cv::Mat &target, int rx, int ry, int rw, int rh) {
copyMat(src, x,y,target,Rect(rx,ry,rw,rh));
}
void ac::fillRect(cv::Mat &m, const Rect &r, cv::Vec3b pixel) {
for(int i = r.x; i < r.x+r.w; ++i) {
for(int z = r.y; z < r.y+r.h; ++z) {
ASSERT(i < m.cols && z < m.rows);
cv::Vec3b &pix = m.at<cv::Vec3b>(z, i);
pix = pixel;
}
}
}
// set custom callback
void ac::setCustom(DrawFunction f) {
custom_callback = f;
}
// call custom fitler defined elsewhere
void ac::custom(cv::Mat &frame) {
if(custom_callback != 0)
custom_callback(frame);
}
void ac::setPlugin(DrawFunction f) {
plugin_func = f;
}
void ac::plugin(cv::Mat &frame) {
if(plugin_func != 0) {
plugin_func(frame);
}
}
ac::DrawFunction ac::getFilter(std::string name) {
return ac::draw_func[filter_map[name]];
}
bool ac::testSize(cv::Mat &frame) {
if(frame.cols < frame.cols/64 || frame.rows < frame.rows/64)
return false;
return true;
}
ac::DrawFunction ac::getRandomFilter(int &index) {
int num;
do {
num = rand()%(draw_max-6);
size_t pos = 0;
pos = ac::draw_strings[num].find("Feedback");
if(pos != std::string::npos)
continue;
} while(ac::draw_strings[num] == "Blend Fractal" || ac::draw_strings[num] == "Blend Fractal Mood");
index = num;
return draw_func[num];
}
int ac::subfilter = -1;
void ac::setSubFilter(int value) {
subfilter = value;
}
void ac::clearSubFilter() {
subfilter = -1;
}
void ac::DarkenImage(cv::Mat &frame, unsigned int size) {
for(int z = 0; z < frame.rows; ++z) {
for(int i = 0; i < frame.cols; ++i) {
cv::Vec3b &pixel = frame.at<cv::Vec3b>(z, i);
for(int j = 0; j < 3; ++j) {
pixel[j] /= size;
}
}
}
}
void ac::SwapColors(cv::Vec3b &cur) {
cv::Vec3b temp = cur;
int color_order = rand()%5;
switch(color_order) {
case 1: cur[0] = temp[2];
cur[1] = temp[1];
cur[2] = temp[0];
break;
case 2:
cur[0] = temp[1];
cur[1] = temp[0];
break;
case 3:
cur[1] = temp[2];
cur[2] = temp[1];
break;
case 4:
cur[0] = temp[1];
cur[1] = temp[2];
cur[2] = temp[0];
break;
}
}
void ac::FillRow(cv::Mat &frame, unsigned int row, unsigned char value) {
for(int z = 0; z < frame.rows; ++z) {
for(int i = 0; i < frame.cols; ++i) {
cv::Vec3b &pixel = frame.at<cv::Vec3b>(z, i);
pixel[row] = value;
}
}
}
void ac::Shuffle(int &index, cv::Mat &frame, std::vector<std::string> &filter_array) {
static auto rng = std::default_random_engine{};
CallFilter(filter_array[index], frame);
++index;
if(index > filter_array.size()-1) {
index = 0;
std::shuffle(filter_array.begin(), filter_array.end(),rng);
}
}