Files
cryptsetup/lib/utils.c
angelomariafederichini191269@protonmail.com e2fee206c2 Allocate suitable sized buffer when reading a keyfile
If the keyfile size is explicitly given, then allocate a suitable sized
buffer right from the start instead of increasing it in 4k steps. This
speeds up reading larger keyfiles.
2017-08-15 08:49:44 +02:00

525 lines
12 KiB
C

/*
* utils - miscellaneous device utilities for cryptsetup
*
* Copyright (C) 2004, Jana Saout <jana@saout.de>
* Copyright (C) 2004-2007, Clemens Fruhwirth <clemens@endorphin.org>
* Copyright (C) 2009-2017, Red Hat, Inc. All rights reserved.
* Copyright (C) 2009-2017, Milan Broz
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <errno.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <sys/resource.h>
#include <sys/types.h>
#include <sys/stat.h>
#include "internal.h"
size_t crypt_getpagesize(void)
{
long r = sysconf(_SC_PAGESIZE);
return r <= 0 ? DEFAULT_MEM_ALIGNMENT : (size_t)r;
}
unsigned crypt_cpusonline(void)
{
long r = sysconf(_SC_NPROCESSORS_ONLN);
return r < 0 ? 1 : r;
}
ssize_t read_buffer(int fd, void *buf, size_t count)
{
size_t read_size = 0;
ssize_t r;
if (fd < 0 || !buf)
return -EINVAL;
do {
r = read(fd, buf, count - read_size);
if (r == -1 && errno != EINTR)
return r;
if (r == 0)
return (ssize_t)read_size;
if (r > 0) {
read_size += (size_t)r;
buf = (uint8_t*)buf + r;
}
} while (read_size != count);
return (ssize_t)count;
}
ssize_t write_buffer(int fd, const void *buf, size_t count)
{
size_t write_size = 0;
ssize_t w;
if (fd < 0 || !buf || !count)
return -EINVAL;
do {
w = write(fd, buf, count - write_size);
if (w < 0 && errno != EINTR)
return w;
if (w == 0)
return (ssize_t)write_size;
if (w > 0) {
write_size += (size_t) w;
buf = (const uint8_t*)buf + w;
}
} while (write_size != count);
return (ssize_t)write_size;
}
ssize_t write_blockwise(int fd, size_t bsize, size_t alignment,
void *orig_buf, size_t count)
{
void *hangover_buf = NULL, *buf = NULL;
int r;
size_t hangover, solid;
ssize_t ret = -1;
if (fd == -1 || !orig_buf || !bsize || !alignment)
return -1;
hangover = count % bsize;
solid = count - hangover;
if ((size_t)orig_buf & (alignment - 1)) {
if (posix_memalign(&buf, alignment, count))
return -1;
memcpy(buf, orig_buf, count);
} else
buf = orig_buf;
if (solid) {
r = write_buffer(fd, buf, solid);
if (r < 0 || r != (ssize_t)solid)
goto out;
}
if (hangover) {
if (posix_memalign(&hangover_buf, alignment, bsize))
goto out;
r = read_buffer(fd, hangover_buf, bsize);
if (r < 0 || r < (ssize_t)hangover)
goto out;
if (r < (ssize_t)bsize)
bsize = r;
if (lseek(fd, -(off_t)bsize, SEEK_CUR) < 0)
goto out;
memcpy(hangover_buf, (char*)buf + solid, hangover);
r = write_buffer(fd, hangover_buf, bsize);
if (r < 0 || r < (ssize_t)hangover)
goto out;
}
ret = count;
out:
free(hangover_buf);
if (buf != orig_buf)
free(buf);
return ret;
}
ssize_t read_blockwise(int fd, size_t bsize, size_t alignment,
void *orig_buf, size_t count)
{
void *hangover_buf = NULL, *buf = NULL;
int r;
size_t hangover, solid;
ssize_t ret = -1;
if (fd == -1 || !orig_buf || !bsize || !alignment)
return -1;
hangover = count % bsize;
solid = count - hangover;
if ((size_t)orig_buf & (alignment - 1)) {
if (posix_memalign(&buf, alignment, count))
return -1;
} else
buf = orig_buf;
r = read_buffer(fd, buf, solid);
if (r < 0 || r != (ssize_t)solid)
goto out;
if (hangover) {
if (posix_memalign(&hangover_buf, alignment, bsize))
goto out;
r = read_buffer(fd, hangover_buf, bsize);
if (r < 0 || r < (ssize_t)hangover)
goto out;
memcpy((char *)buf + solid, hangover_buf, hangover);
}
ret = count;
out:
free(hangover_buf);
if (buf != orig_buf) {
memcpy(orig_buf, buf, count);
free(buf);
}
return ret;
}
/*
* Combines llseek with blockwise write. write_blockwise can already deal with short writes
* but we also need a function to deal with short writes at the start. But this information
* is implicitly included in the read/write offset, which can not be set to non-aligned
* boundaries. Hence, we combine llseek with write.
*/
ssize_t write_lseek_blockwise(int fd, size_t bsize, size_t alignment,
void *buf, size_t count, off_t offset)
{
void *frontPadBuf = NULL;
int r;
size_t frontHang, innerCount = 0;
ssize_t ret = -1;
if (fd == -1 || !buf || !bsize || !alignment)
return -1;
if (offset < 0)
offset = lseek(fd, offset, SEEK_END);
if (offset < 0)
return -1;
frontHang = offset % bsize;
if (lseek(fd, offset - frontHang, SEEK_SET) < 0)
return -1;
if (frontHang) {
if (posix_memalign(&frontPadBuf, alignment, bsize))
return -1;
innerCount = bsize - frontHang;
if (innerCount > count)
innerCount = count;
r = read_buffer(fd, frontPadBuf, bsize);
if (r < (frontHang + innerCount))
goto out;
memcpy(frontPadBuf + frontHang, buf, innerCount);
if (lseek(fd, offset - frontHang, SEEK_SET) < 0)
goto out;
r = write_buffer(fd, frontPadBuf, frontHang + innerCount);
if (r != (frontHang + innerCount))
goto out;
buf = (char*)buf + innerCount;
count -= innerCount;
}
ret = count ? write_blockwise(fd, bsize, alignment, buf, count) : 0;
if (ret >= 0)
ret += innerCount;
out:
free(frontPadBuf);
return ret;
}
ssize_t read_lseek_blockwise(int fd, size_t bsize, size_t alignment,
void *buf, size_t count, off_t offset)
{
void *frontPadBuf = NULL;
int r;
size_t frontHang, innerCount = 0;
ssize_t ret = -1;
if (fd == -1 || !buf || bsize <= 0)
return -1;
if (offset < 0)
offset = lseek(fd, offset, SEEK_END);
if (offset < 0)
return -1;
frontHang = offset % bsize;
if (lseek(fd, offset - frontHang, SEEK_SET) < 0)
return -1;
if (frontHang) {
if (posix_memalign(&frontPadBuf, alignment, bsize))
return -1;
innerCount = bsize - frontHang;
if (innerCount > count)
innerCount = count;
r = read_buffer(fd, frontPadBuf, bsize);
if (r < (frontHang + innerCount))
goto out;
memcpy(buf, frontPadBuf + frontHang, innerCount);
buf = (char*)buf + innerCount;
count -= innerCount;
}
ret = read_blockwise(fd, bsize, alignment, buf, count);
if (ret >= 0)
ret += innerCount;
out:
free(frontPadBuf);
return ret;
}
/* MEMLOCK */
#define DEFAULT_PROCESS_PRIORITY -18
static int _priority;
static int _memlock_count = 0;
// return 1 if memory is locked
int crypt_memlock_inc(struct crypt_device *ctx)
{
if (!_memlock_count++) {
log_dbg("Locking memory.");
if (mlockall(MCL_CURRENT | MCL_FUTURE) == -1) {
log_dbg("Cannot lock memory with mlockall.");
_memlock_count--;
return 0;
}
errno = 0;
if (((_priority = getpriority(PRIO_PROCESS, 0)) == -1) && errno)
log_err(ctx, _("Cannot get process priority.\n"));
else
if (setpriority(PRIO_PROCESS, 0, DEFAULT_PROCESS_PRIORITY))
log_dbg("setpriority %d failed: %s",
DEFAULT_PROCESS_PRIORITY, strerror(errno));
}
return _memlock_count ? 1 : 0;
}
int crypt_memlock_dec(struct crypt_device *ctx)
{
if (_memlock_count && (!--_memlock_count)) {
log_dbg("Unlocking memory.");
if (munlockall() == -1)
log_err(ctx, _("Cannot unlock memory.\n"));
if (setpriority(PRIO_PROCESS, 0, _priority))
log_dbg("setpriority %d failed: %s", _priority, strerror(errno));
}
return _memlock_count ? 1 : 0;
}
/* Keyfile processing */
/*
* A simple call to lseek(3) might not be possible for some inputs (e.g.
* reading from a pipe), so this function instead reads of up to BUFSIZ bytes
* at a time until the specified number of bytes. It returns -1 on read error
* or when it reaches EOF before the requested number of bytes have been
* discarded.
*/
static int keyfile_seek(int fd, size_t bytes)
{
char tmp[BUFSIZ];
size_t next_read;
ssize_t bytes_r;
off_t r;
r = lseek(fd, bytes, SEEK_CUR);
if (r > 0)
return 0;
if (r < 0 && errno != ESPIPE)
return -1;
while (bytes > 0) {
/* figure out how much to read */
next_read = bytes > sizeof(tmp) ? sizeof(tmp) : bytes;
bytes_r = read(fd, tmp, next_read);
if (bytes_r < 0) {
if (errno == EINTR)
continue;
/* read error */
return -1;
}
if (bytes_r == 0)
/* EOF */
break;
bytes -= bytes_r;
}
return bytes == 0 ? 0 : -1;
}
int crypt_keyfile_read(struct crypt_device *cd, const char *keyfile,
char **key, size_t *key_size_read,
size_t keyfile_offset, size_t keyfile_size_max,
uint32_t flags)
{
int fd, regular_file, char_to_read = 0, char_read = 0, unlimited_read = 0;
int r = -EINVAL, newline;
char *pass = NULL;
size_t buflen, i, file_read_size;
struct stat st;
*key = NULL;
*key_size_read = 0;
fd = keyfile ? open(keyfile, O_RDONLY) : STDIN_FILENO;
if (fd < 0) {
log_err(cd, _("Failed to open key file.\n"));
return -EINVAL;
}
if (isatty(fd)) {
log_err(cd, _("Cannot read keyfile from a terminal.\n"));
r = -EINVAL;
goto out_err;
}
/* If not requsted otherwise, we limit input to prevent memory exhaustion */
if (keyfile_size_max == 0) {
keyfile_size_max = DEFAULT_KEYFILE_SIZE_MAXKB * 1024 + 1;
unlimited_read = 1;
/* use 4k for buffer (page divisor but avoid huge pages) */
buflen = 4096 - sizeof(struct safe_allocation);
} else
buflen = keyfile_size_max;
regular_file = 0;
if (keyfile) {
if (stat(keyfile, &st) < 0) {
log_err(cd, _("Failed to stat key file.\n"));
goto out_err;
}
if (S_ISREG(st.st_mode)) {
regular_file = 1;
file_read_size = (size_t)st.st_size;
if (keyfile_offset > file_read_size) {
log_err(cd, _("Cannot seek to requested keyfile offset.\n"));
goto out_err;
}
file_read_size -= keyfile_offset;
/* known keyfile size, alloc it in one step */
if (file_read_size >= keyfile_size_max)
buflen = keyfile_size_max;
else if (file_read_size)
buflen = file_read_size;
}
}
pass = crypt_safe_alloc(buflen);
if (!pass) {
log_err(cd, _("Out of memory while reading passphrase.\n"));
goto out_err;
}
/* Discard keyfile_offset bytes on input */
if (keyfile_offset && keyfile_seek(fd, keyfile_offset) < 0) {
log_err(cd, _("Cannot seek to requested keyfile offset.\n"));
goto out_err;
}
for (i = 0, newline = 0; i < keyfile_size_max; i += char_read) {
if (i == buflen) {
buflen += 4096;
pass = crypt_safe_realloc(pass, buflen);
if (!pass) {
log_err(cd, _("Out of memory while reading passphrase.\n"));
r = -ENOMEM;
goto out_err;
}
}
if (flags & CRYPT_KEYFILE_STOP_EOL) {
/* If we should stop on newline, we must read the input
* one character at the time. Otherwise we might end up
* having read some bytes after the newline, which we
* promised not to do.
*/
char_to_read = 1;
} else {
/* char_to_read = min(keyfile_size_max - i, buflen - i) */
char_to_read = keyfile_size_max < buflen ?
keyfile_size_max - i : buflen - i;
}
char_read = read_buffer(fd, &pass[i], char_to_read);
if (char_read < 0) {
log_err(cd, _("Error reading passphrase.\n"));
r = -EPIPE;
goto out_err;
}
if (char_read == 0)
break;
/* Stop on newline only if not requested read from keyfile */
if ((flags & CRYPT_KEYFILE_STOP_EOL) && pass[i] == '\n') {
newline = 1;
pass[i] = '\0';
break;
}
}
/* Fail if piped input dies reading nothing */
if (!i && !regular_file && !newline) {
log_dbg("Nothing read on input.");
r = -EPIPE;
goto out_err;
}
/* Fail if we exceeded internal default (no specified size) */
if (unlimited_read && i == keyfile_size_max) {
log_err(cd, _("Maximum keyfile size exceeded.\n"));
goto out_err;
}
if (!unlimited_read && i != keyfile_size_max) {
log_err(cd, _("Cannot read requested amount of data.\n"));
goto out_err;
}
*key = pass;
*key_size_read = i;
r = 0;
out_err:
if (fd != STDIN_FILENO)
close(fd);
if (r)
crypt_safe_free(pass);
return r;
}