Files
cryptsetup/lib/crypto_backend/pbkdf_check.c
Milan Broz e6f6ee9291 Do not allow PBKDF benchmark over maximum allowed threads.
Unfortunatelly the benchmark function cannot return
corrected parallel cost, so it must fail.

Note that some backends (like OpenSSL) also limits maximal thread count,
so currently it was clapped at 4 for luksFormat and 8 for benchmark.

This patch set it all to PBKDF internal parallel limit.
2025-05-26 11:30:37 +02:00

436 lines
11 KiB
C

// SPDX-License-Identifier: LGPL-2.1-or-later
/*
* PBKDF performance check
* Copyright (C) 2012-2025 Red Hat, Inc. All rights reserved.
* Copyright (C) 2012-2025 Milan Broz
* Copyright (C) 2016-2020 Ondrej Mosnacek
*/
#include <stdlib.h>
#include <errno.h>
#include <limits.h>
#include <time.h>
#include <sys/time.h>
#include <sys/resource.h>
#include "crypto_backend.h"
#ifndef CLOCK_MONOTONIC_RAW
#define CLOCK_MONOTONIC_RAW CLOCK_MONOTONIC
#endif
#define BENCH_MIN_MS 250
#define BENCH_MIN_MS_FAST 10
#define BENCH_PERCENT_ATLEAST 95
#define BENCH_PERCENT_ATMOST 110
#define BENCH_SAMPLES_FAST 3
#define BENCH_SAMPLES_SLOW 1
/* These PBKDF2 limits must be never violated */
int crypt_pbkdf_get_limits(const char *kdf, struct crypt_pbkdf_limits *limits)
{
if (!kdf || !limits)
return -EINVAL;
if (!strcmp(kdf, "pbkdf2")) {
limits->min_iterations = 1000; /* recommendation in NIST SP 800-132 */
limits->max_iterations = UINT32_MAX;
limits->min_memory = 0; /* N/A */
limits->min_bench_memory=0; /* N/A */
limits->max_memory = 0; /* N/A */
limits->min_parallel = 0; /* N/A */
limits->max_parallel = 0; /* N/A */
return 0;
} else if (!strcmp(kdf, "argon2i") || !strcmp(kdf, "argon2id")) {
limits->min_iterations = 4;
limits->max_iterations = UINT32_MAX;
limits->min_memory = 32; /* hard limit */
limits->min_bench_memory=64*1024; /* 64 MiB minimum for benchmark */
limits->max_memory = 4*1024*1024; /* 4GiB */
limits->min_parallel = 1;
limits->max_parallel = 4;
return 0;
}
return -EINVAL;
}
static long time_ms(struct rusage *start, struct rusage *end)
{
int count_kernel_time = 0;
long ms;
if (crypt_backend_flags() & CRYPT_BACKEND_KERNEL)
count_kernel_time = 1;
/*
* If there is no self usage info, count system time.
* This seem like getrusage() bug in some hypervisors...
*/
if (!end->ru_utime.tv_sec && !start->ru_utime.tv_sec &&
!end->ru_utime.tv_usec && !start->ru_utime.tv_usec)
count_kernel_time = 1;
ms = (end->ru_utime.tv_sec - start->ru_utime.tv_sec) * 1000;
ms += (end->ru_utime.tv_usec - start->ru_utime.tv_usec) / 1000;
if (count_kernel_time) {
ms += (end->ru_stime.tv_sec - start->ru_stime.tv_sec) * 1000;
ms += (end->ru_stime.tv_usec - start->ru_stime.tv_usec) / 1000;
}
return ms;
}
static long timespec_ms(struct timespec *start, struct timespec *end)
{
return (end->tv_sec - start->tv_sec) * 1000 +
(end->tv_nsec - start->tv_nsec) / (1000 * 1000);
}
static int measure_argon2(const char *kdf, const char *password, size_t password_length,
const char *salt, size_t salt_length,
char *key, size_t key_length,
uint32_t t_cost, uint32_t m_cost, uint32_t parallel,
size_t samples, long ms_atleast, long *out_ms)
{
long ms, ms_min = LONG_MAX;
int r;
size_t i;
for (i = 0; i < samples; i++) {
struct timespec tstart, tend;
/*
* NOTE: We must use clock_gettime here, because Argon2 can run over
* multiple threads, and thus we care about real time, not CPU time!
*/
if (clock_gettime(CLOCK_MONOTONIC_RAW, &tstart) < 0)
return -EINVAL;
r = crypt_pbkdf(kdf, NULL, password, password_length, salt,
salt_length, key, key_length, t_cost, m_cost, parallel);
if (r < 0)
return r;
if (clock_gettime(CLOCK_MONOTONIC_RAW, &tend) < 0)
return -EINVAL;
ms = timespec_ms(&tstart, &tend);
if (ms < 0)
return -EINVAL;
if (ms < ms_atleast) {
/* early exit */
ms_min = ms;
break;
}
if (ms < ms_min) {
ms_min = ms;
}
}
*out_ms = ms_min;
return 0;
}
#define CONTINUE 0
#define FINAL 1
static int next_argon2_params(uint32_t *t_cost, uint32_t *m_cost,
uint32_t min_t_cost, uint32_t min_m_cost,
uint32_t max_m_cost, long ms, uint32_t target_ms)
{
uint32_t old_t_cost, old_m_cost, new_t_cost, new_m_cost;
uint64_t num, denom;
old_t_cost = *t_cost;
old_m_cost = *m_cost;
if ((uint32_t)ms > target_ms) {
/* decreasing, first try to lower t_cost, then m_cost */
num = (uint64_t)*t_cost * (uint64_t)target_ms;
denom = (uint64_t)ms;
new_t_cost = (uint32_t)(num / denom);
if (new_t_cost < min_t_cost) {
num = (uint64_t)*t_cost * (uint64_t)*m_cost *
(uint64_t)target_ms;
denom = (uint64_t)min_t_cost * (uint64_t)ms;
*t_cost = min_t_cost;
*m_cost = (uint32_t)(num / denom);
if (*m_cost < min_m_cost) {
*m_cost = min_m_cost;
return FINAL;
}
} else {
*t_cost = new_t_cost;
}
} else {
/* increasing, first try to increase m_cost, then t_cost */
num = (uint64_t)*m_cost * (uint64_t)target_ms;
denom = (uint64_t)ms;
new_m_cost = (uint32_t)(num / denom);
if (new_m_cost > max_m_cost) {
num = (uint64_t)*t_cost * (uint64_t)*m_cost *
(uint64_t)target_ms;
denom = (uint64_t)max_m_cost * (uint64_t)ms;
*t_cost = (uint32_t)(num / denom);
*m_cost = max_m_cost;
if (*t_cost <= min_t_cost) {
*t_cost = min_t_cost;
return FINAL;
}
} else if (new_m_cost < min_m_cost) {
*m_cost = min_m_cost;
return FINAL;
} else {
*m_cost = new_m_cost;
}
}
/* do not continue if it is the same as in the previous run */
if (old_t_cost == *t_cost && old_m_cost == *m_cost)
return FINAL;
return CONTINUE;
}
static int crypt_argon2_check(const char *kdf, const char *password,
size_t password_length, const char *salt,
size_t salt_length, size_t key_length,
uint32_t min_t_cost, uint32_t min_m_cost, uint32_t max_m_cost,
uint32_t parallel, uint32_t target_ms,
uint32_t *out_t_cost, uint32_t *out_m_cost,
int (*progress)(uint32_t time_ms, void *usrptr),
void *usrptr)
{
int r = 0;
char *key = NULL;
uint32_t t_cost, m_cost;
long ms;
long ms_atleast = (long)target_ms * BENCH_PERCENT_ATLEAST / 100;
long ms_atmost = (long)target_ms * BENCH_PERCENT_ATMOST / 100;
if (key_length <= 0 || target_ms <= 0)
return -EINVAL;
if (min_m_cost < (parallel * 8))
min_m_cost = parallel * 8;
if (max_m_cost < min_m_cost)
return -EINVAL;
key = malloc(key_length);
if (!key)
return -ENOMEM;
t_cost = min_t_cost;
m_cost = min_m_cost;
/* 1. Find some small parameters, s. t. ms >= BENCH_MIN_MS: */
while (1) {
r = measure_argon2(kdf, password, password_length, salt, salt_length,
key, key_length, t_cost, m_cost, parallel,
BENCH_SAMPLES_FAST, BENCH_MIN_MS, &ms);
if (!r) {
/* Update parameters to actual measurement */
*out_t_cost = t_cost;
*out_m_cost = m_cost;
if (progress && progress((uint32_t)ms, usrptr))
r = -EINTR;
}
if (r < 0)
goto out;
if (ms >= BENCH_MIN_MS)
break;
if (m_cost == max_m_cost) {
if (ms < BENCH_MIN_MS_FAST)
t_cost *= 16;
else {
uint32_t new = (t_cost * BENCH_MIN_MS) / (uint32_t)ms;
if (new == t_cost)
break;
t_cost = new;
}
} else {
if (ms < BENCH_MIN_MS_FAST)
m_cost *= 16;
else {
uint32_t new = (m_cost * BENCH_MIN_MS) / (uint32_t)ms;
if (new == m_cost)
break;
m_cost = new;
}
if (m_cost > max_m_cost) {
m_cost = max_m_cost;
}
}
}
/*
* 2. Use the params obtained in (1.) to estimate the target params.
* 3. Then repeatedly measure the candidate params and if they fall out of
* the acceptance range (+-5 %), try to improve the estimate:
*/
do {
if (next_argon2_params(&t_cost, &m_cost, min_t_cost, min_m_cost,
max_m_cost, ms, target_ms)) {
/* Update parameters to final computation */
*out_t_cost = t_cost;
*out_m_cost = m_cost;
break;
}
r = measure_argon2(kdf, password, password_length, salt, salt_length,
key, key_length, t_cost, m_cost, parallel,
BENCH_SAMPLES_SLOW, ms_atleast, &ms);
if (!r) {
/* Update parameters to actual measurement */
*out_t_cost = t_cost;
*out_m_cost = m_cost;
if (progress && progress((uint32_t)ms, usrptr))
r = -EINTR;
}
if (r < 0)
break;
} while (ms < ms_atleast || ms > ms_atmost);
out:
if (key) {
/* Key can be derived from a real provided password */
crypt_backend_memzero(key, key_length);
free(key);
}
return r;
}
/* This code benchmarks PBKDF and returns iterations/second using specified hash */
static int crypt_pbkdf_check(const char *kdf, const char *hash,
const char *password, size_t password_length,
const char *salt, size_t salt_length,
size_t key_length, uint32_t *iter_secs, uint32_t target_ms,
int (*progress)(uint32_t time_ms, void *usrptr), void *usrptr)
{
struct rusage rstart, rend;
int r = 0, step = 0;
long ms = 0;
char *key = NULL;
uint32_t iterations;
double PBKDF2_temp;
if (!kdf || !hash || key_length <= 0)
return -EINVAL;
key = malloc(key_length);
if (!key)
return -ENOMEM;
*iter_secs = 0;
iterations = 1 << 15;
while (1) {
if (getrusage(RUSAGE_SELF, &rstart) < 0) {
r = -EINVAL;
goto out;
}
r = crypt_pbkdf(kdf, hash, password, password_length, salt,
salt_length, key, key_length, iterations, 0, 0);
if (r < 0)
goto out;
if (getrusage(RUSAGE_SELF, &rend) < 0) {
r = -EINVAL;
goto out;
}
ms = time_ms(&rstart, &rend);
if (ms) {
PBKDF2_temp = (double)iterations * target_ms / ms;
if (PBKDF2_temp > UINT32_MAX) {
r = -EINVAL;
goto out;
}
*iter_secs = (uint32_t)PBKDF2_temp;
}
if (progress && progress((uint32_t)ms, usrptr)) {
r = -EINTR;
goto out;
}
if (ms > 500)
break;
if (ms <= 62)
iterations <<= 4;
else if (ms <= 125)
iterations <<= 3;
else if (ms <= 250)
iterations <<= 2;
else
iterations <<= 1;
if (++step > 10 || !iterations) {
r = -EINVAL;
goto out;
}
}
out:
if (key) {
/* Key can be derived from a real provided password */
crypt_backend_memzero(key, key_length);
free(key);
}
return r;
}
int crypt_pbkdf_perf(const char *kdf, const char *hash,
const char *password, size_t password_size,
const char *salt, size_t salt_size,
size_t volume_key_size, uint32_t time_ms,
uint32_t max_memory_kb, uint32_t parallel_threads,
uint32_t *iterations_out, uint32_t *memory_out,
int (*progress)(uint32_t time_ms, void *usrptr), void *usrptr)
{
struct crypt_pbkdf_limits pbkdf_limits;
int r = -EINVAL;
uint32_t min_memory;
if (!kdf || !iterations_out || !memory_out)
return -EINVAL;
r = crypt_pbkdf_get_limits(kdf, &pbkdf_limits);
if (r < 0)
return r;
if (parallel_threads > pbkdf_limits.max_parallel)
return -EINVAL;
min_memory = pbkdf_limits.min_bench_memory;
if (min_memory > max_memory_kb)
min_memory = max_memory_kb;
*memory_out = 0;
*iterations_out = 0;
if (!strcmp(kdf, "pbkdf2"))
r = crypt_pbkdf_check(kdf, hash, password, password_size,
salt, salt_size, volume_key_size,
iterations_out, time_ms, progress, usrptr);
else if (!strncmp(kdf, "argon2", 6))
r = crypt_argon2_check(kdf, password, password_size,
salt, salt_size, volume_key_size,
pbkdf_limits.min_iterations,
min_memory,
max_memory_kb,
parallel_threads, time_ms, iterations_out,
memory_out, progress, usrptr);
return r;
}