Files
ffmpeg/libavcodec/vulkan/ffv1_dec.comp
Lynne 29b85cd4b8 vulkan_ffv1: add cached symbol reader for AMD
Speeds up everything on AMD by 3x.
This uses 32 local invocations to load state into cache, as well
as to do the RCT faster.
2025-04-14 06:10:43 +02:00

379 lines
12 KiB
Plaintext

/*
* FFv1 codec
*
* Copyright (c) 2024 Lynne <dev@lynne.ee>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef RGB
#define LADDR(p) (p)
#else
#define RGB_LINECACHE 2
#define RGB_LBUF (RGB_LINECACHE - 1)
#define LADDR(p) (ivec2((p).x, ((p).y & RGB_LBUF)))
#endif
#ifdef RGB
ivec2 get_pred(ivec2 sp, ivec2 off, int p, int sw, uint8_t quant_table_idx)
{
const ivec2 yoff_border1 = expectEXT(off.x == 0, false) ? ivec2(1, -1) : ivec2(0, 0);
/* Thanks to the same coincidence as below, we can skip checking if off == 0, 1 */
VTYPE3 top = VTYPE3(TYPE(imageLoad(dec[p], sp + LADDR(off + ivec2(-1, -1) + yoff_border1))[0]),
TYPE(imageLoad(dec[p], sp + LADDR(off + ivec2(0, -1)))[0]),
TYPE(imageLoad(dec[p], sp + LADDR(off + ivec2(min(1, sw - off.x - 1), -1)))[0]));
/* Normally, we'd need to check if off != ivec2(0, 0) here, since otherwise, we must
* return zero. However, ivec2(-1, 0) + ivec2(1, -1) == ivec2(0, -1), e.g. previous
* row, 0 offset, same slice, which is zero since we zero out the buffer for RGB */
TYPE cur = TYPE(imageLoad(dec[p], sp + LADDR(off + ivec2(-1, 0) + yoff_border1))[0]);
int base = quant_table[quant_table_idx][0][(cur - top[0]) & MAX_QUANT_TABLE_MASK] +
quant_table[quant_table_idx][1][(top[0] - top[1]) & MAX_QUANT_TABLE_MASK] +
quant_table[quant_table_idx][2][(top[1] - top[2]) & MAX_QUANT_TABLE_MASK];
if (expectEXT(extend_lookup[quant_table_idx] > 0, false)) {
TYPE cur2 = TYPE(0);
if (expectEXT(off.x > 0, true)) {
const ivec2 yoff_border2 = expectEXT(off.x == 1, false) ? ivec2(-1, -1) : ivec2(-2, 0);
cur2 = TYPE(imageLoad(dec[p], sp + LADDR(off + yoff_border2))[0]);
}
base += quant_table[quant_table_idx][3][(cur2 - cur) & MAX_QUANT_TABLE_MASK];
/* top-2 became current upon swap */
TYPE top2 = TYPE(imageLoad(dec[p], sp + LADDR(off))[0]);
base += quant_table[quant_table_idx][4][(top2 - top[1]) & MAX_QUANT_TABLE_MASK];
}
/* context, prediction */
return ivec2(base, predict(cur, VTYPE2(top)));
}
#else
ivec2 get_pred(ivec2 sp, ivec2 off, int p, int sw, uint8_t quant_table_idx)
{
const ivec2 yoff_border1 = off.x == 0 ? ivec2(1, -1) : ivec2(0, 0);
sp += off;
VTYPE3 top = VTYPE3(TYPE(0),
TYPE(0),
TYPE(0));
if (off.y > 0 && off != ivec2(0, 1))
top[0] = TYPE(imageLoad(dec[p], sp + ivec2(-1, -1) + yoff_border1)[0]);
if (off.y > 0) {
top[1] = TYPE(imageLoad(dec[p], sp + ivec2(0, -1))[0]);
top[2] = TYPE(imageLoad(dec[p], sp + ivec2(min(1, sw - off.x - 1), -1))[0]);
}
TYPE cur = TYPE(0);
if (off != ivec2(0, 0))
cur = TYPE(imageLoad(dec[p], sp + ivec2(-1, 0) + yoff_border1)[0]);
int base = quant_table[quant_table_idx][0][(cur - top[0]) & MAX_QUANT_TABLE_MASK] +
quant_table[quant_table_idx][1][(top[0] - top[1]) & MAX_QUANT_TABLE_MASK] +
quant_table[quant_table_idx][2][(top[1] - top[2]) & MAX_QUANT_TABLE_MASK];
if ((quant_table[quant_table_idx][3][127] != 0) ||
(quant_table[quant_table_idx][4][127] != 0)) {
TYPE cur2 = TYPE(0);
if (off.x > 0 && off != ivec2(1, 0)) {
const ivec2 yoff_border2 = off.x == 1 ? ivec2(1, -1) : ivec2(0, 0);
cur2 = TYPE(imageLoad(dec[p], sp + ivec2(-2, 0) + yoff_border2)[0]);
}
base += quant_table[quant_table_idx][3][(cur2 - cur) & MAX_QUANT_TABLE_MASK];
TYPE top2 = TYPE(0);
if (off.y > 1)
top2 = TYPE(imageLoad(dec[p], sp + ivec2(0, -2))[0]);
base += quant_table[quant_table_idx][4][(top2 - top[1]) & MAX_QUANT_TABLE_MASK];
}
/* context, prediction */
return ivec2(base, predict(cur, VTYPE2(top)));
}
#endif
#ifndef GOLOMB
#ifdef CACHED_SYMBOL_READER
shared uint8_t state[CONTEXT_SIZE];
#define READ(c, off) get_rac_direct(c, state[off])
#else
#define READ(c, off) get_rac(c, uint64_t(slice_state) + (state_off + off))
#endif
int get_isymbol(inout RangeCoder c, uint state_off)
{
if (READ(c, 0))
return 0;
uint e = 1;
for (; e < 33; e++)
if (!READ(c, min(e, 10)))
break;
if (expectEXT(e == 1, false)) {
return READ(c, 11) ? -1 : 1;
} else if (expectEXT(e == 33, false)) {
corrupt = true;
return 0;
}
int a = 1;
for (uint i = e + 20; i >= 22; i--) {
a <<= 1;
a |= int(READ(c, min(i, 31)));
}
return READ(c, min(e + 10, 21)) ? -a : a;
}
void decode_line_pcm(inout SliceContext sc, ivec2 sp, int w, int y, int p, int bits)
{
#ifndef RGB
if (p > 0 && p < 3) {
w >>= chroma_shift.x;
sp >>= chroma_shift;
}
#endif
for (int x = 0; x < w; x++) {
uint v = 0;
for (int i = (bits - 1); i >= 0; i--)
v |= uint(get_rac_equi(sc.c)) << i;
imageStore(dec[p], sp + LADDR(ivec2(x, y)), uvec4(v));
}
}
void decode_line(inout SliceContext sc, ivec2 sp, int w,
int y, int p, int bits, uint state_off,
uint8_t quant_table_idx, const int run_index)
{
#ifndef RGB
if (p > 0 && p < 3) {
w >>= chroma_shift.x;
sp >>= chroma_shift;
}
#endif
for (int x = 0; x < w; x++) {
ivec2 pr = get_pred(sp, ivec2(x, y), p, w,
quant_table_idx);
uint context_off = state_off + CONTEXT_SIZE*abs(pr[0]);
#ifdef CACHED_SYMBOL_READER
u8buf sb = u8buf(uint64_t(slice_state) + context_off + gl_LocalInvocationID.x);
state[gl_LocalInvocationID.x] = sb.v;
barrier();
if (gl_LocalInvocationID.x == 0) {
#endif
int diff = get_isymbol(sc.c, context_off);
if (pr[0] < 0)
diff = -diff;
uint v = zero_extend(pr[1] + diff, bits);
imageStore(dec[p], sp + LADDR(ivec2(x, y)), uvec4(v));
#ifdef CACHED_SYMBOL_READER
}
sb.v = state[gl_LocalInvocationID.x];
#endif
}
}
#else /* GOLOMB */
void decode_line(inout SliceContext sc, ivec2 sp, int w,
int y, int p, int bits, uint state_off,
uint8_t quant_table_idx, inout int run_index)
{
#ifndef RGB
if (p > 0 && p < 3) {
w >>= chroma_shift.x;
sp >>= chroma_shift;
}
#endif
int run_count = 0;
int run_mode = 0;
for (int x = 0; x < w; x++) {
ivec2 pos = sp + ivec2(x, y);
int diff;
ivec2 pr = get_pred(sp, ivec2(x, y), p, w,
quant_table_idx);
VlcState sb = VlcState(uint64_t(slice_state) + state_off + VLC_STATE_SIZE*abs(pr[0]));
if (pr[0] == 0 && run_mode == 0)
run_mode = 1;
if (run_mode != 0) {
if (run_count == 0 && run_mode == 1) {
int tmp_idx = int(log2_run[run_index]);
if (get_bit(sc.gb)) {
run_count = 1 << tmp_idx;
if (x + run_count <= w)
run_index++;
} else {
if (tmp_idx != 0) {
run_count = int(get_bits(sc.gb, tmp_idx));
} else
run_count = 0;
if (run_index != 0)
run_index--;
run_mode = 2;
}
}
run_count--;
if (run_count < 0) {
run_mode = 0;
run_count = 0;
diff = read_vlc_symbol(sc.gb, sb, bits);
if (diff >= 0)
diff++;
} else {
diff = 0;
}
} else {
diff = read_vlc_symbol(sc.gb, sb, bits);
}
if (pr[0] < 0)
diff = -diff;
uint v = zero_extend(pr[1] + diff, bits);
imageStore(dec[p], sp + LADDR(ivec2(x, y)), uvec4(v));
}
}
#endif
#ifdef RGB
ivec4 transform_sample(ivec4 pix, ivec2 rct_coef)
{
pix.b -= rct_offset;
pix.r -= rct_offset;
pix.g -= (pix.b*rct_coef.y + pix.r*rct_coef.x) >> 2;
pix.b += pix.g;
pix.r += pix.g;
return ivec4(pix[fmt_lut[0]], pix[fmt_lut[1]],
pix[fmt_lut[2]], pix[fmt_lut[3]]);
}
void writeout_rgb(in SliceContext sc, ivec2 sp, int w, int y, bool apply_rct)
{
for (uint x = gl_LocalInvocationID.x; x < w; x += gl_WorkGroupSize.x) {
ivec2 lpos = sp + LADDR(ivec2(x, y));
ivec2 pos = sc.slice_pos + ivec2(x, y);
ivec4 pix;
pix.r = int(imageLoad(dec[2], lpos)[0]);
pix.g = int(imageLoad(dec[0], lpos)[0]);
pix.b = int(imageLoad(dec[1], lpos)[0]);
if (transparency != 0)
pix.a = int(imageLoad(dec[3], lpos)[0]);
if (expectEXT(apply_rct, true))
pix = transform_sample(pix, sc.slice_rct_coef);
imageStore(dst[0], pos, pix);
if (planar_rgb != 0) {
for (int i = 1; i < color_planes; i++)
imageStore(dst[i], pos, ivec4(pix[i]));
}
}
}
#endif
void decode_slice(inout SliceContext sc, const uint slice_idx)
{
int run_index = 0;
int w = sc.slice_dim.x;
ivec2 sp = sc.slice_pos;
#ifndef RGB
int bits = bits_per_raw_sample;
#else
int bits = 9;
if (bits != 8 || sc.slice_coding_mode != 0)
bits = bits_per_raw_sample + int(sc.slice_coding_mode != 1);
sp.y = int(gl_WorkGroupID.y)*RGB_LINECACHE;
#endif
/* PCM coding */
#ifndef GOLOMB
if (sc.slice_coding_mode == 1) {
if (gl_LocalInvocationID.x > 0)
return;
#ifndef RGB
for (int p = 0; p < planes; p++) {
int h = sc.slice_dim.y;
if (p > 0 && p < 3)
h >>= chroma_shift.y;
for (int y = 0; y < h; y++)
decode_line_pcm(sc, sp, w, y, p, bits);
}
#else
for (int y = 0; y < sc.slice_dim.y; y++) {
for (int p = 0; p < color_planes; p++)
decode_line_pcm(sc, sp, w, y, p, bits);
writeout_rgb(sc, sp, w, y, false);
}
#endif
} else
/* Arithmetic coding */
#endif
{
u8vec4 quant_table_idx = sc.quant_table_idx.xyyz;
u32vec4 slice_state_off = (slice_idx*codec_planes + uvec4(0, 1, 1, 2))*plane_state_size;
#ifndef RGB
for (int p = 0; p < planes; p++) {
int h = sc.slice_dim.y;
if (p > 0 && p < 3)
h >>= chroma_shift.y;
for (int y = 0; y < h; y++)
decode_line(sc, sp, w, y, p, bits,
slice_state_off[p], quant_table_idx[p], run_index);
}
#else
for (int y = 0; y < sc.slice_dim.y; y++) {
for (int p = 0; p < color_planes; p++)
decode_line(sc, sp, w, y, p, bits,
slice_state_off[p], quant_table_idx[p], run_index);
writeout_rgb(sc, sp, w, y, true);
}
#endif
}
}
void main(void)
{
const uint slice_idx = gl_WorkGroupID.y*gl_NumWorkGroups.x + gl_WorkGroupID.x;
decode_slice(slice_ctx[slice_idx], slice_idx);
}