Files
veejay/veejay-current/libvje/effects/diff.c
Niels Elburg ae616b5448 full range yuv (jpeg) for 420,422, decode videoframe before completing open, scan pixel format, changed clamping were applicable in fx
git-svn-id: svn://code.dyne.org/veejay/trunk@672 eb8d1916-c9e9-0310-b8de-cf0c9472ead5
2006-10-21 00:46:19 +00:00

271 lines
6.0 KiB
C

/*
* Linux VeeJay
*
* Copyright(C)2002 Niels Elburg <elburg@hio.hen.nl>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License , or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307 , USA.
*/
#include "diff.h"
#include "common.h"
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
typedef struct
{
int has_bg;
uint8_t *static_bg[3];
double *sqrt_table[256];
uint8_t *data;
} diff_data;
vj_effect *diff_init(int width, int height)
{
//int i,j;
vj_effect *ve = (vj_effect *) vj_malloc(sizeof(vj_effect));
ve->num_params = 4;
ve->defaults = (int *) vj_malloc(sizeof(int) * ve->num_params); /* default values */
ve->limits[0] = (int *) vj_malloc(sizeof(int) * ve->num_params); /* min */
ve->limits[1] = (int *) vj_malloc(sizeof(int) * ve->num_params); /* max */
ve->limits[0][0] = 0;
ve->limits[1][0] = 9;
ve->limits[0][1] = 0; /* threshold min */
ve->limits[1][1] = 25500;
ve->limits[0][2] = 0; /* threshold difference min */
ve->limits[1][2] = 25500;
ve->limits[0][3] = 0;
ve->limits[1][3] = 1;
ve->defaults[0] = 4;
ve->defaults[1] = 3000;
ve->defaults[2] = 3000;
ve->defaults[3] = 1;
ve->description = "Difference Overlay";
ve->extra_frame = 1;
ve->sub_format = 1;
ve->has_user = 1;
ve->user_data = NULL;
return ve;
}
int diff_malloc(void **d, int width, int height)
{
int i;
diff_data *my;
*d = (void*) vj_malloc(sizeof(diff_data));
my = (diff_data*) *d;
my->static_bg[0] = (uint8_t*) vj_malloc(sizeof(uint8_t)* width * height);
memset( my->static_bg[0], 0 , (width*height));
my->data = (uint8_t*) vj_malloc(sizeof(uint8_t) * width * height );
memset(my->data, 0, width * height);
for(i=0; i < 256; i ++)
my->sqrt_table[i] = (double*)vj_malloc(sizeof(double)* 256);
my->has_bg = 0;
return 1;
}
void diff_free(void *d)
{
if(d)
{
int i;
diff_data *my = (diff_data*) d;
if(my->static_bg[0]) free( my->static_bg[0] );
if(my->data) free(my->data);
for(i = 0; i < 256 ; i ++)
if( my->sqrt_table[i]) free( my->sqrt_table[i]);
free(d);
}
d = NULL;
}
void diff_prepare(void *user, uint8_t *map[3], int width, int height)
{
diff_data *my = (diff_data*) user;
int d,e,x,y,len=width*height;
uint8_t *luma_map = map[0];
// map[0] contains luma information of the frame
// int g_width = 7;
my->static_bg[0][0] = luma_map[0];
// first row, 3x1 average
for(y=1; y < width; y++)
{
my->static_bg[0][y] = ( luma_map[y-1] + luma_map[y] + luma_map[y+1] ) / 3;
}
// 3x3 window average
for(y=width; y < len-width; y+= width)
{
// first pixel on row
my->static_bg[0][y] = luma_map[y];
for(x=1; x < width-1; x++)
{
my->static_bg[0][y+x] = (
luma_map[x+y-width-1] +
luma_map[x+y-width] +
luma_map[x+y-width+1] +
luma_map[x+y+width-1] +
luma_map[x+y+width+1] +
luma_map[x+y+width] +
luma_map[x+y-1 ] +
luma_map[x+y+1 ] +
luma_map[x+y]
) / 9;
}
// last pixel on row
my->static_bg[0][y+x+1] = luma_map[y+x+1];
}
// last row, 3x3 average
for(y=len-width; y < len; y++)
{
my->static_bg[0][y] = (luma_map[y-1] + luma_map[y+1] + luma_map[y] ) /3;
}
// calculate distance vector
for(d=0; d < 256; d ++)
{
for(e=0; e < 256;e++ )
{
my->sqrt_table[d][e] = sqrt( (d-e) * (d-e) );
}
}
my->has_bg = 1;
}
void diff_apply(void *ed, VJFrame *frame,
VJFrame *frame2, int width, int height,
int K_level, int noise_level,int noise_level2, int mode)
{
unsigned int i;
double d;
int x,y;
int K = 0;
uint8_t *dst;
double level1 = (double)noise_level / 100.0;
double level2 = (double)noise_level2 / 100.0;
const int len = frame->len;
uint8_t *Y = frame->data[0];
uint8_t *Cb = frame->data[1];
uint8_t *Cr = frame->data[2];
uint8_t *Y2 = frame2->data[0];
uint8_t *Cb2 = frame2->data[1];
uint8_t *Cr2 = frame2->data[2];
diff_data *ud = (diff_data*) ed;
uint8_t *map = (uint8_t*) ud->static_bg[0];
double **tab = (double**) ud->sqrt_table;
dst = ud->data;
// calculate if pixel is much different (has greater distance)
// accepted pixels are 0xff
if(!ud->has_bg)
{
printf("No static bg in has_bg\n");
return;
}
for(i = 0 ; i < len ; i ++ )
{
d = tab[ ( map[i]) ][ (Y[i]) ];
if(d > level1)
{
dst[i] = 0xff;
}
else
{
dst[i] = 0x0;
}
d = tab[ map[i]][ (Y2[i]) ];
if(d > level2)
{
dst[i] = 0xf0;
}
}
// anti alias frame to remove isolated white pixels
for(y=width; y < len-width; y+= width)
{
for(x=1; x < width-1; x ++)
{
if( dst[x+y] >= 0xf0)
{ // have a bad influence on branch prediction
// simple 3x3 window where the value of K
// indicates whether to accept or discard an isolated pixel
K = 1;
if( dst[x+y-width] >= 0xf0 ) K++;
if( dst[x+y+width] >= 0xf0 ) K++;
if( dst[x+y-width+1] >= 0xf0 ) K++;
if( dst[x+y+width+1] >= 0xf0 ) K++;
if( dst[x+y+width-1] >= 0xf0 ) K++;
if( dst[x+y-width-1] >= 0xf0 ) K++;
if( dst[x+y-1] >= 0xf0) K++;
if( dst[x+y+1] >= 0xf0) K++;
if( K <= K_level ) dst[x+y] = 0x0;
}
}
}
if(mode == 0)
{
// apply difference frame
for( i = 0; i < len ; i++)
{
if(dst[i] == 0xf0)
{
Y[i] = Y2[i];
Cb[i] = Cb2[i];
Cr[i] = Cr2[i];
}
}
}
else
{
// show different pixels in white
for( i = 0; i < len ; i++)
{
if(dst[i] == 0xf0)
{
Y[i] = 200;
}
else
{
if(dst[i] != 0xff)
{
Y[i] = pixel_Y_lo_;
}
else
{
Y[i] = pixel_Y_hi_;
}
}
Cr[i] = 128;
Cr[i] = 128;
}
}
}