Files
veejay/veejay-current/veejay-server/libvje/effects/ripple.c

197 lines
5.6 KiB
C

/*
* Linux VeeJay
*
* Copyright(C)2002 Niels Elburg <elburg@hio.hen.nl>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License , or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307 , USA.
*/
/* This effect recalculates a pretty large table if 'waves' or 'amplitude'
is changed. Results will be placed in ripple_table, a copy of the
frame is kept in ripple_data. So is the calculation of the first frame slow,
the following frames will use the cached coordinates until the user changes
the number of waves or the amplitude.
*/
#include <stdlib.h>
#include <stdint.h>
#include <stdio.h>
#include <math.h>
#include <stdio.h>
#include "common.h"
#include "ripple.h"
#define RIPPLE_DEGREES 360
#define RIPPLE_VAL 180.0
static double *ripple_table;
static uint8_t *ripple_data[4] = { NULL,NULL,NULL,NULL };
static double *ripple_sin;
static double *ripple_cos;
static int ripple_waves = 0;
static int ripple_ampli = 0;
static int ripple_attn = 0;
static int have_calc_data = 0;
// FIXME private
vj_effect *ripple_init(int width, int height)
{
vj_effect *ve = (vj_effect *) vj_calloc(sizeof(vj_effect));
ve->num_params = 3;
ve->defaults = (int *) vj_calloc(sizeof(int) * ve->num_params); /* default values */
ve->limits[0] = (int *) vj_calloc(sizeof(int) * ve->num_params); /* min */
ve->limits[1] = (int *) vj_calloc(sizeof(int) * ve->num_params); /* max */
ve->limits[0][0] = 1;
ve->limits[1][0] = 3600;
ve->limits[0][1] = 1;
ve->limits[1][1] = 80;
ve->limits[0][2] = 1;
ve->limits[1][2] = 360;
ve->defaults[0] = 132;
ve->defaults[1] = 47;
ve->defaults[2] = 7;
ve->description = "Ripple";
ve->sub_format = 1;
ve->extra_frame = 0;
ve->has_user = 0;
ve->param_description = vje_build_param_list( ve->num_params, "Waves", "Amplitude", "Attenuation");
return ve;
}
int ripple_malloc(int width, int height)
{
int i;
ripple_table = (double*) vj_malloc(sizeof(double) * RUP8(width * height) + width );
if(!ripple_table) return 0;
ripple_data[0] = (uint8_t*)vj_malloc( sizeof(uint8_t) * RUP8(width * height) + width );
if(!ripple_data[0]) return 0;
ripple_data[1] = (uint8_t*)vj_malloc( sizeof(uint8_t) * RUP8(width * height) + width );
if(!ripple_data[1]) return 0;
ripple_data[2] = (uint8_t*)vj_malloc( sizeof(uint8_t) * RUP8(width * height) + width );
if(!ripple_data[1]) return 0;
ripple_sin = (double*) vj_malloc(sizeof(double) * RIPPLE_DEGREES);
if(!ripple_sin) return 0;
ripple_cos = (double*) vj_malloc(sizeof(double) * RIPPLE_DEGREES);
if(!ripple_cos) return 0;
for(i=0; i < RIPPLE_DEGREES; i++) {
ripple_sin[i] = sin ((M_PI * i) / RIPPLE_VAL);
ripple_cos[i] = sin ((M_PI * i) / RIPPLE_VAL);
}
return 1;
}
void ripple_free() {
int i;
if(ripple_table) free(ripple_table);
if(ripple_sin) free(ripple_sin);
if(ripple_cos) free(ripple_cos);
for( i = 0; i < 3; i ++ ) {
if(ripple_data[i])
free(ripple_data[i]);
ripple_data[i] = NULL;
}
ripple_sin = NULL;
ripple_cos = NULL;
ripple_table = NULL;
have_calc_data = 0;
}
void ripple_apply(VJFrame *frame, int width, int height, int _w, int _a , int _att ) {
double wp2 = width * 0.5;
double hp2 = height * 0.5;
int x,y,dx,dy,a=0,sx=0,sy=0,angle=0;
double r,z;
double maxradius,frequency,amplitude;
double waves = (_w/10.0);
double ampli = (double) (_a/10.0);
double attenuation = (_att/10.0);
uint8_t *Y = frame->data[0];
uint8_t *Cb= frame->data[1];
uint8_t *Cr= frame->data[2];
maxradius = sqrt(wp2 * wp2 + hp2 * hp2);
frequency = 360.0 * waves / maxradius;
amplitude = maxradius / ampli;
if(ripple_waves != _w) {
ripple_waves = _w;
have_calc_data=0;
}
if(ripple_ampli != _a) {
ripple_ampli = _a;
have_calc_data=0;
}
if(ripple_attn != _att) {
ripple_attn = _att;
have_calc_data = 0;
}
int strides[4] = { width * height, width * height, width * height,0 };
vj_frame_copy( frame->data, ripple_data , strides );
if (have_calc_data==0) {
for(y=0; y < height-1;y++) {
for (x=0; x < width; x++) {
dx = x - wp2;
dy = y - hp2;
angle = 180.0 * (atan2(dx,dy)/M_PI);
if (angle < 0) angle+=360.0;
r = sqrt( dx * dx + dy * dy);
z = amplitude/ pow(r,attenuation) * ripple_sin[ ((int)(frequency * r)) % 360 ];
a = ((int) (angle)) % 360;
sx = (int) (x+z * ripple_cos[a]);
sy = (int) (y+z * ripple_sin[a]);
if(sy > (height-1)) sy = height-1;
if(sx > width) sx = width;
if(sx < 0) sx =0;
if(sy < 0) sy =0;
ripple_table[(y*width)+x] = (sx + (sy * width));
Y[((y * width) +x)] = ripple_data[0][(sx +( sy * width)) ];
Cb[((y * width) +x)] = ripple_data[1][(sx +( sy * width)) ];
Cr[((y * width) +x)] = ripple_data[2][(sx +( sy * width)) ];
}
}
}
else {
for(y=0; y < height-1;y++) {
for (x=0; x < width; x++) {
sx = (int) ripple_table[(y*width)+x];
Y[(y * width) +x] = ripple_data[0][sx];
Cb[(y * width) +x] = ripple_data[1][sx];
Cr[(y * width) +x] = ripple_data[2][sx];
}
}
}
}